Spelling suggestions: "subject:"adhesion molecule"" "subject:"dhesion molecule""
1 |
Comparison of herpes simplex virus type 1 and cytokine induction of ICAM 1 and NF#kappa#B expression on endothelial cells from different originsMc Mullen, C. B. Tara January 1997 (has links)
No description available.
|
2 |
Unique roles for the C3 gamma-protocadherin isoform in WNT signaling and dendrite arborizationMah, Kar Men 01 December 2017 (has links)
A key component of neural circuit formation is the elaboration of complex dendritic arbors, the pattern of which constrains inputs to the neuron and thus, the information it processes. As such, many neurodevelopmental disorders such as autism and Down, Rett, and Fragile X Syndromes are associated with reduced forebrain dendrite arborization. Identifying molecules involved in regulating dendrite arborization and neural circuitry formation therefore, is a start to understanding these disorders.
Nearly 70 cadherin superfamily adhesion molecules are encoded by the Pcdha, Pcdhb, and Pcdhg gene clusters. These so-called clustered protocadherins (Pcdhs) are broadly expressed throughout the nervous system, with lower levels found in a few non-neuronal tissues. Each neuron expresses a limited repertoire of clustered Pcdh genes, a complicated process controlled by differential methylation and promoter choice. The clustered Pcdh proteins interact homophilically in trans as cis-multimers, which has the potential to generate a combinatorially explosive number of distinct adhesive interfaces that may give neurons unique molecular identities important for circuit formation. Functional studies of animals in which clustered Pcdhs have been deleted or disrupted demonstrate that these proteins play critical roles in neuronal survival, axon and dendrite arborization, and synaptogenesis. Additionally, they have been implicated in the progression of several cancers, suggesting that basic studies of their function and signaling pathways will have important future clinical applications.
Recent work has shown that γ-Pcdhs can regulate the Wnt signaling pathway, a common tumorigenic pathway which also play roles in neurodevelopment, but the molecular mechanisms remain unknown. I determined that γ-Pcdhs differentially regulate Wnt signaling: the C3 isoform uniquely inhibits the pathway while 13 other isoforms upregulate Wnt signaling. Focusing on γ-Pcdh-C3, I show that the variable cytoplasmic domain (VCD) is critical for Wnt signaling inhibition. γ-Pcdh-C3, but not other isoforms, physically interacts with Axin1, a key component of the canonical Wnt pathway. The C3 VCD competes with Dishevelled for binding to the DIX domain of Axin1, which stabilizes Axin1 at the membrane and leads to reduced phosphorylation of Wnt co-receptor Lrp6. I also present evidence that the Wnt pathway can be modulated up (by γ-Pcdh-A1) or down (by γ-Pcdh-C3) in the cerebral cortex in vivo, using conditional transgenic alleles.
Studies have implicated γ-Pcdhs as a whole, in many neurodevelopmental processes but little is known if distinct roles exists for individual isoforms. By using a specific C3-isoform knockout mouse line engineered in collaboration with Dr. Robert Burgess of The Jackson Laboratory, I was able to uncover a unique role for the C3-isoform in the regulation of dendrite arborization. Mice without γ-Pcdh-C3 exhibit significantly reduced dendrite complexity in cortical neurons. This phenotype was recapitulated in cultured cortical neurons in vitro, which can be rescued by reintroducing the C3-isoform. The ability of γ-Pcdh-C3 to promote dendrite arborization cell-autonomously was abrogated when Axin1 was depleted with an shRNA, indicating that this process by which γ-Pcdh-C3 regulates dendrite arborization is mediated by its interaction with Axin1, which I had previously demonstrated. Together, these data suggest that γ-Pcdh-C3 has unique roles distinct from other γ-Pcdhs, in the regulation of Wnt signaling and dendrite arborization, both of which are mediated by interaction with Axin1.
|
3 |
Heterophilic Cell Adhesion Molecule TgrC1 and its Binding Partners during Dictyostelium discoideum DevelopmentChen, Gong 27 March 2014 (has links)
During development, Dictyostelium discoideum cells assume muticellularity via their collective aggregation. Cell-cell adhesion is required for morphogenesis, cell differentiation, cell sorting and gene expression during development. TgrC1 is a heterophilic cell adhesion molecule which is indispendable for complete development. TgrC1 can be considered as the most important cell adhesion molecule for D. discoideum development because deletion of the tgrC1 gene completely arrests development at the loose aggregate stage and inhibits fruiting body formation.
In order to investigate the biological role of TgrC1 during development, I have chosen to identify and charactize the extracellular heterophilic partner and the cytoplasmic binding partner(s) of TgrC1. Using different biochemical approaches, we identified TgrB1 as the heterophilic binding partner of TgrC1 and demonstrated that their association is mediated through IPT/TIG domains in the extracellular region of both proteins. Both tgrB1 and tgrC1 share the same transcriptional promoter and their spatiotemporal expression pattern is identical during development. We also examined the assembly of TgrC1-TgrB1 complexes via the split green fluorescence protein complementation assay and the fluorescence resonance energy transfer approach. Whereas TgrC1 is capable of forming cis-homodimers spontaneously, cis-homodimerization of TgrB1 depends on its trans-interaction with TgrC1. A model of the assembly process has been proposed.
To investigate signalling events initiated by the interaction between TgrB1 and TgrC1, pull-down assays were employed and led to the identification of myosin heavy chain kinase C as the cytoplamic partner of TgrC1. Mutational analysis showed that the basic residues in the short cytoplasmic domain of TgrC1 are critical to the binding with MHCK-C. Disruption of the interation between MHCK-C and TgrC1 results in an alteration of cell motility at the aggregation stage and aberrant cell sorting in slugs. These studies have highlighted the role of TgrB1-TgrC1 complexes in the regulation of morphogenesis during Dictyostelium development.
|
4 |
Heterophilic Cell Adhesion Molecule TgrC1 and its Binding Partners during Dictyostelium discoideum DevelopmentChen, Gong 27 March 2014 (has links)
During development, Dictyostelium discoideum cells assume muticellularity via their collective aggregation. Cell-cell adhesion is required for morphogenesis, cell differentiation, cell sorting and gene expression during development. TgrC1 is a heterophilic cell adhesion molecule which is indispendable for complete development. TgrC1 can be considered as the most important cell adhesion molecule for D. discoideum development because deletion of the tgrC1 gene completely arrests development at the loose aggregate stage and inhibits fruiting body formation.
In order to investigate the biological role of TgrC1 during development, I have chosen to identify and charactize the extracellular heterophilic partner and the cytoplasmic binding partner(s) of TgrC1. Using different biochemical approaches, we identified TgrB1 as the heterophilic binding partner of TgrC1 and demonstrated that their association is mediated through IPT/TIG domains in the extracellular region of both proteins. Both tgrB1 and tgrC1 share the same transcriptional promoter and their spatiotemporal expression pattern is identical during development. We also examined the assembly of TgrC1-TgrB1 complexes via the split green fluorescence protein complementation assay and the fluorescence resonance energy transfer approach. Whereas TgrC1 is capable of forming cis-homodimers spontaneously, cis-homodimerization of TgrB1 depends on its trans-interaction with TgrC1. A model of the assembly process has been proposed.
To investigate signalling events initiated by the interaction between TgrB1 and TgrC1, pull-down assays were employed and led to the identification of myosin heavy chain kinase C as the cytoplamic partner of TgrC1. Mutational analysis showed that the basic residues in the short cytoplasmic domain of TgrC1 are critical to the binding with MHCK-C. Disruption of the interation between MHCK-C and TgrC1 results in an alteration of cell motility at the aggregation stage and aberrant cell sorting in slugs. These studies have highlighted the role of TgrB1-TgrC1 complexes in the regulation of morphogenesis during Dictyostelium development.
|
5 |
Structure and function of CD31Newton, Justin Philip January 1997 (has links)
The regulated interaction of leukocyte with endothelium is of key importance during normal immune surveillance and leukocyte infiltration to sites of infection in the inflammatory response. This thesis is concerned with the structure and function of CD31 (platelet-endothelial cell adhesion molecule-1), one of the adhesion molecules implicated in these processes. Previous work has shown both in vivo and in vitro that CD31 is involved in the final step of leukocyte recruitment, transmigration across the endothelial monolayer. CD31 mediated adhesion is complex, since it is capable of mediating multiple adhesive interactions, both to itself (homophilic adhesion) and to other ligands (heterophilic adhesion). In order to study homophilic adhesion, an heterologous cell-protein assay was used in combination with recombinant chimeric CD31Fc fusion proteins, ICAM-3/CD31 chimeras and chimeras between human and murine CD31. These reagents located the homophilic binding site to the NH<sub>2</sub>-terminal domains 1 and 2, but also define a non-binding accessory role for the membrane proximal domains. Using site-directed mutagenesis to target all of the exposed charged residues in domain 1 and a subset of charged residues in domain 2, five residues were identified, mutations in which resulted in inhibition of homophilic adhesion. These residues map to both faces of the domain 1 immunoglobulinlike fold, suggesting that each molecule of CD31 interacts with two others. A novel zipper model of homophilic adhesion involving CD31 lateral association analogous to that seen amongst cadherins is proposed on the basis of these results. Evidence for lateral association of CD31 to form dimers was obtained from biophysical, biochemical and molecular biology techniques. These show that Cd31 exists in an equilibrium between monomeric and dimeric forms both in solution as soluble recombinant protein, and at the cell surface. In solution the affinity of the interaction was calculated to lie in the range 12-14μM. A large panel of anti-CD31 monoclonal antibodies were generated and tested for their ability to effect homophilic adhesion. Inhibitory antibodies were identified, mapping throughout the extracellular domain, away from the ligand binding site. In addition possible stimulating antibodies mapping to the membrane proximal domains were also identified. This indicates that CDS 1 may be induced to undergo conformational changes which effect homophilic adhesion, and it is proposed that these conformational changes may be linked to the ability of CD31 to form laterally associated dimers. Using the reagents described above, a screen of haematopoietic cell lines identified a novel heterophilic interaction, which was shown to be mediated by the integrin αvβ3. Proteinprotein assays were used to confirm a direct physical association between CD31 and αvβ3, and to map the integrin binding site to the third immunoglobulin-like fold of CD31. The functional significance of this interaction was assessed in neutrophil transmigration assays, in which both anti-CD31 and anti-αvβ3 antibodies were found to partially inhibit neutrophil transmigration.
|
6 |
VCAM-1 Signaling in Endothelial Cells for Lymphocyte MigrationDeem, Tracy L. January 2004 (has links)
No description available.
|
7 |
Role of 11β-hydroxysteroid dehydrogenase type 2 in protection against inflammation during atherogenesis : studies in the Apoe-/- /11β-HSD2-/- double knockout mouseArmour, Danielle Louise January 2010 (has links)
It is well established that atherosclerosis, an inflammatory response to chronic injury in the blood vessel wall, plays a leading role in the development and progression of cardiovascular disease. Mineralocorticoid receptor (MR) over-activation has been implicated in atherosclerosis. In mineralocorticoid-target tissues, 11β- Hydroxysteroid dehydrogenase type 2 (11β-HSD2) inactivates glucocorticoids, conferring aldosterone specificity upon the normally unselective MR. Recent evidence suggests that 11β-HSD2 may also afford protection of MR in the cells of the vasculature, providing possible mechanisms by which MR activation may directly promote atherosclerosis. Consistent with this, Apoe-/-/11β-HSD2-/- double knockout (DKO) mice show accelerated atheroma development. The present thesis tested the hypothesis that inactivation of 11β-HSD2, allowing inappropriate activation of MR in cells of the vasculature, accelerates atherogenesis through promotion of a pro-inflammatory environment with increased endothelial cell expression of adhesion molecules and subsequent macrophage infiltration into plaques. DKO mice received either the MR antagonist eplerenone (200mg/kg/day) or vehicle in normal chow diet from 2 months of age for 12 weeks. Eplerenone significantly decreased atherosclerotic burden in brachiocephalic arteries of DKO mice, an effect that was accompanied by alterations in the cellular composition of plaques such that a more stable collagen- and smooth muscle cell- rich plaque was formed. Eplerenone treatment was also associated with a reduction in vascular inflammation as demonstrated by a significant reduction in macrophage infiltration into DKO plaques. The accelerated atherogenesis in DKO mice was clearly evident by 3 months of age, a time point at which Apoe-/- mice were completely lesion free. By 6 months, some Apoe-/- mice had developed lesions whilst all DKO mice at this age showed much larger plaques. Compared to Apoe-/- mice, the cellular composition of DKO plaques was altered favouring vulnerability and inflammation, with increased macrophage and lipid content and decreased collagen content. To investigate the possible underlying mechanisms responsible for increased inflammatory cell content, the expression of vascular cell adhesion molecule 1 (VCAM-1) was compared in DKO and Apoe-/- brachiocephalic arteries. VCAM-1 immunostaining was significantly greater on the endothelial cells of DKO arteries at 3 months compared to age-matched Apoe-/- mice. At 6 months, DKO and Apoe-/- mice had similar expression of VCAM-1. Finally, mouse aortic endothelial cells (MAECs) were used to investigate the mechanism of adhesion molecule up-regulation in the absence of 11β-HSD2. Both aldosterone and TNF-α, included as a positive control, dramatically increased VCAM-1 expression in MAECs. Spironolactone pre-treatment blocked the effect of aldosterone, suggesting an MR-mediated mechanism. Corticosterone alone had no effect on VCAM-1 expression. However, inhibition of 11β-HSD2 by pre-treatment with glycyrrhetinic acid allowed corticosterone to induce a significant increase in the number of VCAM-1-stained MAECs, demonstrating functional expression of 11β- HSD2 in MAECs. Consistent with 11β-HSD2 involvement, VCAM-1 up-regulation by corticosterone in the presence of glycyrrhetinic acid was reversed by blockade of MR with spironolactone. In conclusion, loss of 11β-HSD2 activity leading to inappropriate activation of MR in atherosclerotic mice promotes plaque vulnerability and increases vascular infiltration of macrophages which accelerates plaque growth, possibly through enhanced MR- mediated endothelial cell expression of VCAM-1.
|
8 |
Investigating the role of Junctional Adhesion Molecule-C (JAM-C) in endothelial cell biology in vitro and in vivo using human and mouse modelsBeal, Robert William John January 2018 (has links)
Junctional adhesion molecule C (JAM-C) is a component of endothelial cell (EC) tight junctions that has been implicated in a number of endothelial functions, such as angiogenesis and trafficking of leukocytes through the endothelium during inflammation. Work within our lab has identified that loss of JAM-C at EC junctions results in increased reverse transendothelial migration (rTEM) of neutrophils back into the circulation, a response that has been associated with the dissemination of inflammation to distant organs. Whilst the mechanism by which JAM-C is lost or redistributed away from EC junctions has begun to be elucidated, little is known about how loss of endothelial JAM-C impacts the functions of ECs. As such, this thesis aimed to investigate the effect of JAM-C deficiency on EC functions to unravel possible molecular and cellular mechanisms of mediating neutrophil rTEM. To address the effect of JAM-C deficiency on EC functions, an in vitro RNA interference (RNAi) approach was used to efficiently knock-down (KD) JAM-C in human umbilical vein ECs (HUVECs). Importantly, KD of JAM-C did not affect expression of other key EC junctional markers such as JAM-A and VE-Cadherin and cell proliferation and apoptosis were similarly unaffected. Gene expression profiling using microarrays revealed that JAM-C depleted HUVECs exhibited a pro-inflammatory phenotype under basal conditions that was characterised by increased expression of pro-inflammatory genes such as ICAM1 and IL8. Following IL-1β-induced inflammation, no difference in expression of pro-inflammatory genes was detected between control and JAM-C KD HUVECs. However, protein levels of secreted chemokines such as IL-8 were reduced in JAM-C KD HUVECs following stimulation with IL-1β. This was corroborated by in vivo studies demonstrating reduced levels of secreted chemokines in the plasma of mice where JAM-C was conditionally deleted from ECs. A novel finding of this work is the demonstration that JAM-C KD HUVECs exhibit increased autophagy under basal conditions. This might provide a potential mechanism for the reduced chemokine secretion that is observed in this system, whereby chemokines are preferentially trafficked for autophagosome-mediated degradation. Taken together, these findings indicate a multi-functional role for JAM-C in regulating EC homeostasis under basal conditions. JAM-C KD ECs respond aberrantly to inflammatory stimuli by secreting reduced chemokine levels, a consequence that could provide novel insights into the mechanisms of neutrophil rTEM under conditions of endothelial JAM-C loss.
|
9 |
An investigation into the mechanism of TMIGD1-mediated signal transduction pathway in human epithelial cellsEngblom, Nels 11 July 2017 (has links)
Dysregulation of protein expression, in particular expression of proto-oncogenes and tumor-suppressor genes whose function play key roles in cell growth, adhesion and migration, are hallmarks of human malignancies.
Transmembrane and immunoglobulin-containing domain 1 (TMIGD1) was recently discovered as a cell adhesion molecule (CAM) that plays an important role in epithelial cell function by regulating epithelial cell polarity and adhesion. The extracellular domain of TMIGD1 contains two Ig domains that are involved in cell-cell interaction, followed by a transmembrane region and short cytoplasmic domain with potential to relay signal transduction. Our further investigation demonstrated TMIGD1 is downregulated in human colon cancer, suggesting a potentially important role for TMIGD1 in the regulation colorectal cancer. However, the molecular mechanisms of TMIGD1-mediated signal transduction, which could relay its function in epithelial cells, are not known.
Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we have identified moesin as a possible TMIGD1 binding protein. Moesin, a member of the Ezrin/Radixin/Moesin (ERM) family of proteins, is upregulated in human tumors.
Moesin stimulates cell migration, tumor invasion, adherence and modulates cytoskeletal actin assembly. Similar to other ERM family proteins, moesin contains an N-terminal FERM domain, which binds to transmembrane proteins, and a C-terminal C-ERMAD domain, which binds F-actin. The overall goal of this study was to determine the binding of moesin with TMIGD1 and the specific domain involved in mediating the binding of moesin with TMIGD1.
Our study in vitro and in vivo binding assays demonstrate that moesin interacts with the cytoplasmic domain of TMIGD1 via its FERM domain. Moreover, we demonstrate TMIGD1 interaction with moesin inhibits phosphorylation of moesin, indicating that perhaps TMIGD1 inhibits tumor cell migration through inhibition of phosphorylation of moesin. Additionally, TMIGD1 alters cellular localization of moesin, suggesting that altered cellular localization by TMIGD1 could account for inhibition of phosphorylation of moesin. We propose that TMIGD1 sequesters moesin near the cell membrane, preventing its interaction with PIP2, which is required for its phosphorylation and hence inhibits moesin activation.
Altogether, the data presented in this work identifies moesin as a key signaling component of TMIGD1. Moesin directly interacts with TMIGD1 via its FERM domain. Recruitment of moesin to TMIGD1 blocks phosphorylation of moesin, suggesting that TMIGD1 exerts its effect in tumor cells in part by inhibition of moesin activation. / 2018-07-11T00:00:00Z
|
10 |
IGCR1 is a novel cell-surface moleculeMoore, Victoria Ann 12 July 2017 (has links)
Tumor angiogenesis, the ability of tumor cells to stimulate blood vessel growth, is one the most critical steps of tumor progression. To support the growth of the expanding tumor, the “angiogenic switch” is turned on, which is often triggered by hypoxia (i.e., low oxygen)-mediated events such as expression of vascular endothelial growth factor (VEGF), causing normally quiescent endothelial cells to proliferate and sprout.
An emerging picture of angiogenesis suggests that while governed by complex mechanisms, cell adhesion molecules (CAMs) plays a pivotal role in the regulation of angiogenesis. Our laboratory recently identified multiple previously unknown proteins including, transmembrane and immunoglobulin domain containing 1 (TMIGD1) and immunoglobulin-containing and proline-rich receptor 1 (IGPR1). Immunoglobulin-containing and cysteine-rich receptor 1 (IGCR1) represents the third remember of IGPR-1 family proteins. To investigate the expression and function of IGCR1, we have developed a rabbit polyclonal anti-IGCR1 antibody and demonstrated that IGCR1 is expressed in the endothelial cells of human blood vessels. To examine possible function of IGCR1, we have generated porcine aortic endothelial (PAE) cells over-expressing IGCR1. We demonstrate that IGCR1 expression in PAE cells inhibited cell proliferation and capillary tube formation as measured by colorimetric MTT and matrigel tube formation assays, respectively. In contrast, over-expression of IGCR1 in PAE cells inhibited cell migration as measured by wounding assay. Taken together, this study identifies IGCR1 as a novel regulator of angiogenesis. Given, angiogenesis is a highly coordinated cellular processes controlled spatially and temporally by a myriad of cell surface receptors and ligands, IGCR1 by modulating the rate of endothelial cell proliferation and migration, plays a significant role in the formation of blood vessels. / 2018-07-11T00:00:00Z
|
Page generated in 0.086 seconds