• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 56
  • 24
  • 14
  • 10
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 69
  • 65
  • 39
  • 34
  • 32
  • 31
  • 29
  • 28
  • 27
  • 27
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adjoint-Based Uncertainty Quantification and Sensitivity Analysis for Reactor Depletion Calculations

Stripling, Hayes Franklin 16 December 2013 (has links)
Depletion calculations for nuclear reactors model the dynamic coupling between the material composition and neutron flux and help predict reactor performance and safety characteristics. In order to be trusted as reliable predictive tools and inputs to licensing and operational decisions, the simulations must include an accurate and holistic quantification of errors and uncertainties in its outputs. Uncertainty quantification is a formidable challenge in large, realistic reactor models because of the large number of unknowns and myriad sources of uncertainty and error. We present a framework for performing efficient uncertainty quantification in depletion problems using an adjoint approach, with emphasis on high-fidelity calculations using advanced massively parallel computing architectures. This approach calls for a solution to two systems of equations: (a) the forward, engineering system that models the reactor, and (b) the adjoint system, which is mathematically related to but different from the forward system. We use the solutions of these systems to produce sensitivity and error estimates at a cost that does not grow rapidly with the number of uncertain inputs. We present the framework in a general fashion and apply it to both the source-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new approach for reducing the memory and I/O demands on the host machine, which can be overwhelming for typical adjoint algorithms. Our conclusion is that adjoint depletion calculations using full transport solutions are not only computationally tractable, they are the most attractive option for performing uncertainty quantification on high-fidelity reactor analysis problems.
12

Extension of the ADjoint Approach to a Laminar Navier-Stokes Solver

Paige, Cody 16 July 2013 (has links)
The use of adjoint methods is common in computational fluid dynamics to reduce the cost of the sensitivity analysis in an optimization cycle. The forward mode ADjoint is a combination of an adjoint sensitivity analysis method with a forward mode automatic differentiation (AD) and is a modification of the reverse mode ADjoint method proposed by \citet{Mader:2008:B}. A colouring acceleration technique is presented to reduce the computational cost increase associated with forward mode AD. The forward mode AD facilitates the implementation of the laminar Navier--Stokes (NS) equations. The forward mode ADjoint method is applied to a three-dimensional computational fluid dynamics solver. The resulting Euler and viscous ADjoint sensitivities are compared to the reverse mode Euler ADjoint derivatives and a complex-step method to demonstrate the reduced computational cost and accuracy. Both comparisons demonstrate the benefits of the colouring method and the practicality of using a forward mode AD.
13

Extension of the ADjoint Approach to a Laminar Navier-Stokes Solver

Paige, Cody 16 July 2013 (has links)
The use of adjoint methods is common in computational fluid dynamics to reduce the cost of the sensitivity analysis in an optimization cycle. The forward mode ADjoint is a combination of an adjoint sensitivity analysis method with a forward mode automatic differentiation (AD) and is a modification of the reverse mode ADjoint method proposed by \citet{Mader:2008:B}. A colouring acceleration technique is presented to reduce the computational cost increase associated with forward mode AD. The forward mode AD facilitates the implementation of the laminar Navier--Stokes (NS) equations. The forward mode ADjoint method is applied to a three-dimensional computational fluid dynamics solver. The resulting Euler and viscous ADjoint sensitivities are compared to the reverse mode Euler ADjoint derivatives and a complex-step method to demonstrate the reduced computational cost and accuracy. Both comparisons demonstrate the benefits of the colouring method and the practicality of using a forward mode AD.
14

Nonlocal vector calculus

Almutairi, Fahad January 1900 (has links)
Master of Science / Department of Mathematics / Bacim Alali / Nonlocal vector calculus, introduced in generalizes differential operators' calculus to nonlocal calculus of integral operators. Nonlocal vector calculus has been applied to many fields including peridynamics, nonlocal diffusion, and image analysis. In this report, we present a vector calculus for nonlocal operators such as a nonlocal divergence, a nonlocal gradient, and a nonlocal Laplacian. In Chapter 1, we review the local (differential) divergence, gradient, and Laplacian operators. In addition, we discuss their adjoints, the divergence theorem, Green's identities, and integration by parts. In Chapter 2, we define nonlocal analogues of the divergence and gradient operators, and derive the corresponding adjoint operators. In Chapter 3, we present a nonlocal divergence theorem, nonlocal Green's identities, and integration by parts for nonlocal operators. In Chapter 4, we establish a connection between the local and nonlocal operators. In particular, we show that, for specific integral kernels, the nonlocal operators converge to their local counterparts in the limit of vanishing nonlocality.
15

Reconstructing Historical Earthquake-Induced Tsunamis: Case Study of 1852 Event Using the Adjoint Method Combined with HMC

Noorda, Chelsey 22 June 2023 (has links) (PDF)
Seismic hazard analysis aims to estimate human risk due to natural disasters such as earthquakes. To improve seismic hazard analysis, our group is focused on earthquake induced tsunamis and the use of statistical models to reconstruct historical earthquakes. Based on the estimated wave heights given in anecdotal historical descriptions, we created observational probability distributions to model the historically recorded observations and constructed a prior distribution on the relevant earthquake parameters based on known seismicity of a given region. Then we used the software package GeoClaw, and a Metropolis-Hastings sampler to obtain a posterior distribution of earthquake parameters that most closely matches the historically recorded tsunami. Our method was tested on two main events that occurred in 1820 and 1852 in central and eastern Indonesia respectively. The random walk Metropolis-Hastings sampler we employed appeared to recover the causal earthquake quite well, but the computational costs were prohibitive even though both scenarios we considered were relatively simple. To improve the sampling procedure, we have focused on advanced sampling techniques such as Hamiltonian Monte Carlo (HMC) where the gradient of the forward model (Geoclaw) is required. This is problematic however as this gradient is not available computationally. To mitigate this problem, we make use of a linearized adjoint solver for the shallow water equations, and exact gradient calculations for the Okada earthquake rupture model, yielding a surrogate gradient that leads to improved sampling.
16

Aerodynamic Design Sensitivities on an Unstructured Mesh Using the Navier-Stokes Equations and a Discrete Adjoint Formulation

Nielsen, Eric John 11 May 1998 (has links)
A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstructured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint equations is presented. Both compressible and incompressible solvers are differentiated, and the accuracy of the sensitivity derivatives is verified by comparing with gradients obtained using finite differences and a complex-variable approach. Several simplifying approximations to the complete linearization of the residual are also presented. A first-order approximation to the dependent variables is implemented in the adjoint and design equations, and the effect of a "frozen" eddy viscosity and neglecting mesh sensitivity terms is also examined. The resulting derivatives from these approximations are all shown to be inaccurate and often of incorrect sign. However, a partially-converged adjoint solution is shown to be sufficient for computing accurate sensitivity derivatives, yielding a potentially large cost savings in the design process. The convergence rate of the adjoint solver is compared to that of the flow solver. For inviscid adjoint solutions, the cost is roughly one to four times that of a flow solution, whereas for turbulent computations, this ratio can reach as high as ten. Sample optimizations are performed for inviscid and turbulent transonic flows over an ONERA M6 wing, and drag reductions are demonstrated. / Ph. D.
17

Optimisation de forme d’un avion pour sa performance sur une mission / Aircraft shape optimization for mission performance

Gallard, François 26 May 2014 (has links)
Les avions rencontrent de nombreuses conditions d’opérations au cours de leurs vols, comme le nombre de Mach, l’altitude et l’angle d’attaque. Leur prise en compte durant la conception améliore la robustesse du système et finalement la consommation des flottes d’avions. L’optimisation de formes aérodynamiques contribue à la conception des avions, et repose sur l’automatisation de la génération de géométries ainsi que la simulation numérique de la physique du vol. La minimisation de la trainée des formes aérodynamiques doit prendre en compte de multiples conditions d’opération, étant donne que l’optimisation a une unique condition de vol mène a des formes dont la performance se dégrade fortement quand cette condition de vol est perturbée. De plus, la flexibilité structurelle déforme les ailes différemment selon la condition de vol, et doit donc être simulée lors de telles optimisations. Dans cette thèse, la minimisation de la consommation de carburant au cours d’une mission est formulée en problème d’optimisation. Une attention particulière est apportée au choix des conditions d’opérations à inclure dans le problème d’optimisation, étant donne que celles-ci ont un impact majeur sur la qualité des résultats obtenus, et que le cout de calcul est proportionnel à leur nombre. Un nouveau cadre théorique est proposé pour adresser cette question, offrant un point de vue original et surmontant des difficultés révélées par les méthodes a l’état-de-l’ art en matière de mise en place de problèmes d’optimisation multipoints. Un algorithme appelé Gradient Span Analysis (GSA), est proposé pour automatiser le choix des conditions d’opération. Il est base sur la réduction de dimension de l’espace vectoriel engendre par les gradients adjoints aux différentes conditions de vol. Des contributions de programmation a la chaine d’optimisation ont permis d’évaluer les méthodes aux optimisations du profil académique RAE2822 et de la configuration voilure-fuselage XRF-1, représentative des avions de transport modernes. Alors que les formes résultant d’optimisation mono-point présentent de fortes dégradations de performance hors du point de conception, les optimisations multipoints adéquatement formulées fournissent de bien meilleurs compromis. Il est finalement montre que les interactions fluide-structure ajoutent de nouveaux degrés de liberté, et ont un impact sur les optimisations en de multiples conditions de vol, ouvrant des perspectives en matière d’adaptation passive de forme. / An aircraft encounters a wide range of operating conditions during its missions, i.e. flight altitude, Mach number and angle of attack, which consideration at the design phase enhances the system robustness and consequently the overall fleet consumption. Numerical optimization of aerodynamic shapes contributes to aircraft design, and relies on the automation of geometry generation and numerical simulations of the flight physics. Minimization of aerodynamic shapes drag must take into account multiple operating conditions, since optimization at a single operating condition leads to a strong degradation of performance when this operating condition varies. Besides, structural flexibility deforms the wings differently depending on the operating conditions, so has to be simulated during such optimizations. In the present thesis, the mission fuel consumption minimization is formulated as an optimization problem. The focus is made on the choice of operating conditions to be included in the optimization problem, since they have a major impact on the quality of the results, and the computational cost is proportional to their number. A new theoretical framework is proposed, overcoming and giving new insights on problematic situations revealed by state-of-the-art methods for multipoint optimization problem setup. An algorithm called Gradient Span Analysis is proposed to automate the choice of operating conditions. It is based on a reduction of dimension of the vector space spanned by adjoint gradients obtained at the different operating conditions. Programming contributions to the optimization chain enabled the evaluation of the new method on the optimizations of the academic RAE2822 airfoil, and the XRF-1 wing-body configuration, representative of a modern transport aircraft. While the shapes resulting of single-point optimizations present strong degradations of the performance in off-design conditions, adequately formulated multi-Machmulti- lift optimizations present much more interesting performance compromises. It is finally shown that fluid-structure interaction adds new degrees of freedom, and has consequences on multiple flight conditions optimizations, opening the perspective of passive shape adaptation.
18

Tomographie de pente fondée sur l'état adjoint : un outil d'estimation de modèle de vitesse pour l'imagerie sismique / Adjoint slope tomography : a velocity macro-model building tool for seismic imaging

Tavakolifaradonbeh, Borhan 16 November 2017 (has links)
La construction du macro-modèle de vitesse est une étape cruciale de la chaîne d’imagerie sismique afin de produire un modèle adéquat pour la migration ou l'inversion de la formes d’onde complètes (Full Waveform Inversion). Parmi les approches possibles pour construire ce macro-modèle, la tomographie des pentes est fondée sur le pointé d’évènements localement cohérents caractérisés par leur temps de trajet et leurs pentes dans les collections de sismogrammes à source et réflecteur communs. Chaque évènement dans les observables est associé à un petit segment de réflecteur dans le sous-sol caractérisé par sa position et son pendage. Cette thèse propose une reformulation de la tomographie des pentes pour palier aux deux limitations sus-mentionnées. Les temps de trajet sont calculés à l’aide d’un solveur eikonal et la méthode de l’état adjoint est utilisée pour calculer efficacement le gradient de la fonction coût dans le contexte de méthodes d’optimisation locale. Le solveur eikonal est fondé sur une méthode aux différences finies pour la discrétisation des opérateurs différentiels. La méthode est implémentée pour des milieux 2D transverses isotropes avec un axe de symétrie dont l’orientation varie spatialement (milieux TTI). La méthode est évaluée avec différents examples synthétiques comme les cas du modèle isotrope complexe Marmousi et du modèle 2D TTI BP-salt. Dans le cas de milieux TTI, les couplages pouvant exister entre les paramètres de différente nature sont analysés avec un cas synthétique canonique. Cette thèse se conclut par une application à des données de sismique réflexion multitrace large bande (fournie par CGG) afin de reconstruire le modèle de vitesse vertical. / Velocity macro-model building is a crucial step in seismic imaging workflows as it provides the necessary background model for migration or full waveform inversion. Slope tomography, as a reliable alternative for conventional tomography, provides a tool to achieve this purpose where one picks the local coherent events rather than continuous events. These approaches are based on the slopes and traveltimes of the local coherent events which are tied to a reflecting/diffracting point (scatterer) in the subsurface. In this thesis, I introduce an anisotropic slope tomographic approach which aim at macro-model building for subsurface properties in 2D tilted transversely isotropic (TTI) media. In this method, I reformulate the stereotomography, as an slope tomographic tool, such that I replace the ray-based forward engine with a TTI eikonal solver and take advantage of the adjoint state method to calculate the gradients. In result, I can efficiently calculate the traveltimes for complex media and long offset acquisition on a regular grid of the subsurface and formulate a matrix-free framework for the inversion. Different synthetic examples including the isotropic Marmousi and 2D TTI BP-salt model are considered to assess the potential of the method in subsurface parameter estimations. Also, through a simple example, the footprint of parameter cross-talk is investigated for the Thomsen parametrization. As a real data application, the proposed method is applied on a 2D marine BroadSeis data set (provided by CGG) to retrieve the vertical velocity of the subsurface.
19

Calcul de gradient sur des paramètres CAO pour l’optimisation de forme / Gradient-based methods for shape optimization on CAD parameters

Leblond, Timothée 22 March 2017 (has links)
Dans ce manuscrit, nous présentons une méthode d’optimisation de forme qui se base sur des paramètres géométriques comme des longueurs, des angles, etc. Nous nous appuyons sur des techniques d’optimisation basées sur un gradient. La sensibilité de la fonction objectif par rapport à la position des noeuds du maillage nous est fournie par un solveur adjoint que l’on considère comme une boîte noire. Afin d’optimiser par rapport aux paramètres CAO, nous nous concentrons sur l’évaluation de la sensibilité de la position des noeuds par rapport à ces paramètres. Ainsi, nous proposons deux approches par différences finies. La première méthode s’appuie sur une projection harmonique afin de comparer dans un même espace le maillage initial et celui obtenu suite à la variation d’un paramètre CAO. Les développements présentés dans ce manuscrit permettent d’étendre l’application aux formes ayant plusieurs frontières comme les collecteurs d’échappement. Nous avons développé une méthode d’interpolation adaptée à cette comparaison. L’ensemble du processus a été automatisé et nous en montrons l’entière efficacité sur des applications industrielles en aérodynamique interne. La deuxième méthode se base directement sur les géométries CAO pour évaluer cette sensibilité. Nous utilisons la définition intrinsèque des patches dans l’espace paramétrique (u;v) pour effectuer cette comparaison. Grâce à l’utilisation des coordonnées exactes en tout point de la surface fournies par la CAO, nous évitons d’avoir recours à une interpolation afin d’avoir la meilleure précision de calcul possible. Cependant, contrairement à la première méthode, elle requiert d’identifier les correspondances entre les patches d’une forme à l’autre. Une application sur un cas académique a été faite en aérodynamique externe. La pertinence de la première méthode a été démontrée sur des cas représentatifs et multiobjectifs, ce qui permettrait de faciliter son déploiement et son utilisation dans un cadre industriel. Quant à la deuxième méthode, nous avons montré son fort potentiel. Cependant, des développements supplémentaires seraient nécessaires pour une application plus poussée. Du fait qu’elles sont indépendantes des solveurs mécaniques et du nombre de paramètres, ces méthodes réduisent considérablement les temps de développement des produits, notamment en permettant l’optimisation multiphysique en grande dimension. / In this manuscript, we present a shape optimization method based on CAD parameters such as lengths, angles, etc. We rely on gradient-based optimization techniques. The sensitivity of the objective function, with respect to the mesh nodes position, is provided by an adjoint solver considered here as a black box. To optimize with respect to CAD parameters, we focus on computing the sensitivity of the nodes positions with respect to these parameters. Thus, we propose two approaches based on finite differences. The first method uses a harmonic projection to compare in the same space the initial mesh and the one obtained after a change of the set of CAD parameters. The developments presented in this manuscript open up new doors like the application to shapes with multiple borders such as exhaust manifolds. We also developed an interpolation method suitable for this comparison. The entire process is automated, and we demonstrate the entire effectiveness on internal aerodynamics industrial applications. The second method is directly based on the CAD geometries to assess this sensitivity. To perform this comparison, we use the intrinsic definition of the patches in the parametric space (u;v). Through the use of the exact coordinates at any point on the surface provided by the CAD, we avoid using an interpolation to get the best calculation accuracy possible. However, unlike the first method, it requires to identify the correspondence between patches from one shape to another. An application on an external aerodynamics academic case was made. The relevance of the first method is demonstrated on a representative multi-objective case, which facilitate its deployment use in an industrial environment. Regarding the second method, we showed its great potential. However, further developments are needed to handle more advanced cases. Because they are independent of the mechanical solver and the number of parameters, these methods significantly reduce product development time, particularly by allowing large and multiphysics optimization.
20

Prédiction par transfert inverse d'un champ de conductance thermique de contact dans un mur de réacteur métallurgique

Rousseau, Clément January 2011 (has links)
Cette étude porte sur l'estimation par méthode inverse d'un champ de conductance thermique de contact entre deux matériaux formant la paroi d'un réacteur métallurgique. Dans le cas du montage de réacteur métallurgique, il est essentiel de venir déterminer la conductance thermique de contact dans l'assemblage. Cela permet de venir identifier et corriger les défauts de contact avant la mise en fonctionnement du réacteur métallurgique.Cette étude utilise les méthodes inverses, particulièrement la méthode du gradient conjugué avec un problème adjoint, pour venir réaliser cette estimation. Dans cette étude, la méthode a été validée à l'aide de tests numériques représentant un diagnostic du contact thermique entre la paroi de carbone et la paroi d'acier du réacteur métallurgique avec différentes conductances thermiques de contact. Suite [i.e. à] cette validation, un test avec un bruit de mesure sur les températures de référence de la méthode inverse a été réalisé. Il a été démontré que, pour les tests réalisés sans bruit de mesure, l'erreur d'estimation générale est inférieure à 2%. Pour le test avec un bruit de mesure de «0, 025 K le défaut de contact a été localisé à la bonne position, en revanche l'erreur d'estimation est de 39%. Dans un second temps, des tests supplémentaires ont été réalisés pour observer l'évolution de l'erreur d'estimation en fonction de deux nombres sans dimension, le rapport de conductivité thermique et le nombre de Biot. Cela a permis de conclure qu'il faut avoir simultanément un rapport de conductivité thermique supérieur à 1 et un nombre de Biot supérieur à 0,05 pour obtenir une estimation précise dans les cas étudiés. La méthode permet de venir estimer la conductance thermique de contact, d'une manière novatrice et non intrusive, dans un mur de réacteur métallurgique.

Page generated in 0.02 seconds