• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autonomous Control in Advanced Life Support Systems : Air Revitalisation within the Micro-Ecological Life Support System Alternative / Autonom styrning i avancerade livsuppehållande system : Återupplivning av luft inom det Micro-Ecological Life Support System Alternative

Demey, Lukas January 2023 (has links)
In recent years international space agencies have become more and more explicit about long term lunar and Martian space missions. With the space program Terrae Novae, the European Space Agency puts forward a focus on the development of Human & Robotic Exploration technologies essential in enabling such long term missions. An integral component of this program is the focus on Advanced Life Support Systems. Life support systems are operated to provide astronauts with life necessities like oxygen, water and food. Currently, conventional Life Support System often have a linear supply design, relying on resources shipped from Earth, with limited onboard re-usage. However, for extended space missions, this linear supply model becomes impractical due to the constraints of dry mass during space travel. Given this need, the European Space Agency initiated the MELiSSA (Micro-Ecological Life Support System Alternative) project aimed at the development of a bioregenerative life support systems. In previous works, the MELiSSA Loop has been proposed: a system design inspired by terrestial ecosystems, that consists of multiple compartments that perform specific biological functions like nitrification and biosynthesis. Due to the complex interdependence of the individual compartments and general space system requirements, the control of such this cyber-physical system forms a significant challenge. This thesis proposes a previously undescribed architecture for the MELiSSA Loop controller design that coordinates the resource distribution between the compartments and establishes atmosphere revitalisation. The architecture meets control objectives specified at high level, and at the same time satisfies the physical and operational constraints. / Under de senaste åren har internationella rymdorganisationer blivit mer och mer tydliga om långsiktiga mån- och rymduppdrag på mars. Med rymdprogrammet Terrae Novae lägger Europeiska rymdorganisationen fram ett fokus på utvecklingen av Human & Robotic Exploration-teknik som är nödvändig för att möjliggöra sådana långsiktiga uppdrag. En integrerad del av detta program är fokus på Advanced Life Support Systems. Livsuppehållande system används för att förse astronauter med livsnödvändigheter som syre, vatten och mat. För närvarande har konventionella livsuppehållande system ofta en linjär försörjningsdesign som förlitar sig på resurser som skickas från jorden, med begränsad återanvändning ombord. Men för utökade rymduppdrag blir denna linjära försörjningsmodell opraktisk på grund av begränsningarna av torr massa under rymdresor. Med tanke på detta behov initierade Europeiska rymdorganisationen MELiSSA-projektet (MicroEcological Life Support System Alternative) som syftade till att utveckla ett bioregenerativt livsuppehållande system. I tidigare arbeten har MELiSSA Loop föreslagits: en systemdesign inspirerad av terrestiska ekosystem, som består av flera fack som utför specifika biologiska funktioner som nitrifikation och biosyntes. På grund av det komplexa ömsesidiga beroendet mellan de enskilda avdelningarna och allmänna krav på rymdsystem, utgör kontrollen av sådana detta cyberfysiska system en betydande utmaning. Denna avhandling föreslår en tidigare obeskriven arkitektur för MELiSSA Loopkontrollerdesignen som koordinerar resursfördelningen mellan avdelningarna och etablerar återupplivning av atmosfären. Arkitekturen uppfyller styrmål som anges på hög nivå, och uppfyller samtidigt de fysiska och operativa begränsningarna.

Page generated in 0.0777 seconds