• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real-time anomaly detection with in-flight data : streaming anomaly detection with heterogeneous communicating agents / Détection des anomalies sur les données en vol en temps réel avec des agents communicants hétérogènes

Aussel, Nicolas 21 June 2019 (has links)
Avec l'augmentation du nombre de capteurs et d'actuateurs dans les avions et le développement de liaisons de données fiables entre les avions et le sol, il est devenu possible d'améliorer la sécurité et la fiabilité des systèmes à bord en appliquant des techniques d'analyse en temps réel. Cependant, étant donné la disponibilité limité des ressources de calcul embarquées et le coût élevé des liaisons de données, les solutions architecturelles actuelles ne peuvent pas exploiter pleinement toutes les ressources disponibles, limitant leur précision.Notre but est de proposer un algorithme distribué de prédiction de panne qui pourrait être exécuté à la fois à bord de l'avion et dans une station au sol tout en respectant un budget de communication. Dans cette approche, la station au sol disposerait de ressources de calcul rapides et de données historiques et l'avion disposerait de ressources de calcul limitées et des données de vol actuelles.Dans cette thèse, nous étudierons les spécificités des données aéronautiques et les méthodes déjà existantes pour produire des prédictions de pannes à partir de ces dernières et nous proposerons une solution au problème posé. Notre contribution sera détaillé en trois parties.Premièrement, nous étudierons le problème de prédiction d'événements rares créé par la haute fiabilité des systèmes aéronautiques. Beaucoup de méthodes d'apprentissage en classification reposent sur des jeux de données équilibrés. Plusieurs approches existent pour corriger le déséquilibre d'un jeu de donnée et nous étudierons leur efficacité sur des jeux de données extrêmement déséquilibrés.Deuxièmement, nous étudierons le problème d'analyse textuelle de journaux car de nombreux systèmes aéronautiques ne produisent pas d'étiquettes ou de valeurs numériques faciles à interpréter mais des messages de journaux textuels. Nous étudierons les méthodes existantes basées sur une approche statistique et sur l'apprentissage profond pour convertir des messages de journaux textuels en une forme utilisable en entrée d'algorithmes d'apprentissage pour classification. Nous proposerons notre propre méthode basée sur le traitement du langage naturel et montrerons comment ses performances dépassent celles des autres méthodes sur un jeu de donnée public standard.Enfin, nous offrirons une solution au problème posé en proposant un nouvel algorithme d'apprentissage distribué s'appuyant sur deux paradigmes d'apprentissage existant, l'apprentissage actif et l'apprentissage fédéré. Nous détaillerons notre algorithme, son implémentation et fournirons une comparaison de ses performances avec les méthodes existantes / With the rise of the number of sensors and actuators in an aircraft and the development of reliable data links from the aircraft to the ground, it becomes possible to improve aircraft security and maintainability by applying real-time analysis techniques. However, given the limited availability of on-board computing and the high cost of the data links, current architectural solutions cannot fully leverage all the available resources limiting their accuracy.Our goal is to provide a distributed algorithm for failure prediction that could be executed both on-board of the aircraft and on a ground station and that would produce on-board failure predictions in near real-time under a communication budget. In this approach, the ground station would hold fast computation resources and historical data and the aircraft would hold limited computational resources and current flight's data.In this thesis, we will study the specificities of aeronautical data and what methods already exist to produce failure prediction from them and propose a solution to the problem stated. Our contribution will be detailed in three main parts.First, we will study the problem of rare event prediction created by the high reliability of aeronautical systems. Many learning methods for classifiers rely on balanced datasets. Several approaches exist to correct a dataset imbalance and we will study their efficiency on extremely imbalanced datasets.Second, we study the problem of log parsing as many aeronautical systems do not produce easy to classify labels or numerical values but log messages in full text. We will study existing methods based on a statistical approach and on Deep Learning to convert full text log messages into a form usable as an input by learning algorithms for classifiers. We will then propose our own method based on Natural Language Processing and show how it outperforms the other approaches on a public benchmark.Last, we offer a solution to the stated problem by proposing a new distributed learning algorithm that relies on two existing learning paradigms Active Learning and Federated Learning. We detail our algorithm, its implementation and provide a comparison of its performance with existing methods
2

Autonomous Control in Advanced Life Support Systems : Air Revitalisation within the Micro-Ecological Life Support System Alternative / Autonom styrning i avancerade livsuppehållande system : Återupplivning av luft inom det Micro-Ecological Life Support System Alternative

Demey, Lukas January 2023 (has links)
In recent years international space agencies have become more and more explicit about long term lunar and Martian space missions. With the space program Terrae Novae, the European Space Agency puts forward a focus on the development of Human & Robotic Exploration technologies essential in enabling such long term missions. An integral component of this program is the focus on Advanced Life Support Systems. Life support systems are operated to provide astronauts with life necessities like oxygen, water and food. Currently, conventional Life Support System often have a linear supply design, relying on resources shipped from Earth, with limited onboard re-usage. However, for extended space missions, this linear supply model becomes impractical due to the constraints of dry mass during space travel. Given this need, the European Space Agency initiated the MELiSSA (Micro-Ecological Life Support System Alternative) project aimed at the development of a bioregenerative life support systems. In previous works, the MELiSSA Loop has been proposed: a system design inspired by terrestial ecosystems, that consists of multiple compartments that perform specific biological functions like nitrification and biosynthesis. Due to the complex interdependence of the individual compartments and general space system requirements, the control of such this cyber-physical system forms a significant challenge. This thesis proposes a previously undescribed architecture for the MELiSSA Loop controller design that coordinates the resource distribution between the compartments and establishes atmosphere revitalisation. The architecture meets control objectives specified at high level, and at the same time satisfies the physical and operational constraints. / Under de senaste åren har internationella rymdorganisationer blivit mer och mer tydliga om långsiktiga mån- och rymduppdrag på mars. Med rymdprogrammet Terrae Novae lägger Europeiska rymdorganisationen fram ett fokus på utvecklingen av Human & Robotic Exploration-teknik som är nödvändig för att möjliggöra sådana långsiktiga uppdrag. En integrerad del av detta program är fokus på Advanced Life Support Systems. Livsuppehållande system används för att förse astronauter med livsnödvändigheter som syre, vatten och mat. För närvarande har konventionella livsuppehållande system ofta en linjär försörjningsdesign som förlitar sig på resurser som skickas från jorden, med begränsad återanvändning ombord. Men för utökade rymduppdrag blir denna linjära försörjningsmodell opraktisk på grund av begränsningarna av torr massa under rymdresor. Med tanke på detta behov initierade Europeiska rymdorganisationen MELiSSA-projektet (MicroEcological Life Support System Alternative) som syftade till att utveckla ett bioregenerativt livsuppehållande system. I tidigare arbeten har MELiSSA Loop föreslagits: en systemdesign inspirerad av terrestiska ekosystem, som består av flera fack som utför specifika biologiska funktioner som nitrifikation och biosyntes. På grund av det komplexa ömsesidiga beroendet mellan de enskilda avdelningarna och allmänna krav på rymdsystem, utgör kontrollen av sådana detta cyberfysiska system en betydande utmaning. Denna avhandling föreslår en tidigare obeskriven arkitektur för MELiSSA Loopkontrollerdesignen som koordinerar resursfördelningen mellan avdelningarna och etablerar återupplivning av atmosfären. Arkitekturen uppfyller styrmål som anges på hög nivå, och uppfyller samtidigt de fysiska och operativa begränsningarna.

Page generated in 0.1057 seconds