• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • Tagged with
  • 38
  • 38
  • 38
  • 12
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

TOWARDS SECURE AND ROBUST 3D PERCEPTION IN THE REAL WORLD: AN ADVERSARIAL APPROACH

Zhiyuan Cheng (19104104) 11 July 2024 (has links)
<p dir="ltr">The advent of advanced machine learning and computer vision techniques has led to the feasibility of 3D perception in the real world, which includes but not limited to tasks of monocular depth estimation (MDE), 3D object detection, semantic scene completion, optical flow estimation (OFE), etc. Due to the 3D nature of our physical world, these techniques have enabled various real-world applications like Autonomous Driving (AD), unmanned aerial vehicle (UAV), virtual/augmented reality (VR/AR) and video composition, revolutionizing the field of transportation and entertainment. However, it is well-documented that Deep Neural Network (DNN) models can be susceptible to adversarial attacks. These attacks, characterized by minimal perturbations, can precipitate substantial malfunctions. Considering that 3D perception techniques are crucial for security-sensitive applications, such as autonomous driving systems (ADS), in the real world, adversarial attacks on these systems represent significant threats. As a result, my goal of research is to build secure and robust real-world 3D perception systems. Through the examination of vulnerabilities in 3D perception techniques under such attacks, my dissertation aims to expose and mitigate these weaknesses. Specifically, I propose stealthy physical-world attacks against MDE, a fundamental component in ADS and AR/VR that facilitates the projection from 2D to 3D. I have advanced the stealth of the patch attack by minimizing the patch size and disguising the adversarial pattern, striking an optimal balance between stealth and efficacy. Moreover, I develop single-modal attacks against camera-LiDAR fusion models for 3D object detection, utilizing adversarial patches. This method underscores that mere fusion of sensors does not assure robustness against adversarial attacks. Additionally, I study black-box attacks against MDE and OFE models, which are more practical and impactful as no model details are required and the models can be compromised through only queries. In parallel, I devise a self-supervised adversarial training method to harden MDE models without the necessity of ground-truth depth labels. This enhanced model is capable of withstanding a range of adversarial attacks, including those in the physical world. Through these innovative designs for both attack and defense, this research contributes to the development of more secure and robust 3D perception systems, particularly in the context of the real world applications.</p>
32

Towards Privacy and Communication Efficiency in Distributed Representation Learning

Sheikh S Azam (12836108) 10 June 2022 (has links)
<p>Over the past decade, distributed representation learning has emerged as a popular alternative to conventional centralized machine learning training. The increasing interest in distributed representation learning, specifically federated learning, can be attributed to its fundamental property that promotes data privacy and communication savings. While conventional ML encourages aggregating data at a central location (e.g., data centers), distributed representation learning advocates keeping data at the source and instead transmitting model parameters across the network. However, since the advent of deep learning, model sizes have become increasingly large often comprising million-billions of parameters, which leads to the problem of communication latency in the learning process. In this thesis, we propose to tackle the problem of communication latency in two different ways: (i) learning private representation of data to enable its sharing, and (ii) reducing the communication latency by minimizing the corresponding long-range communication requirements.</p> <p><br></p> <p>To tackle the former goal, we first start by studying the problem of learning representations that are private yet informative, i.e., providing information about intended ''ally'' targets while hiding sensitive ''adversary'' attributes. We propose Exclusion-Inclusion Generative Adversarial Network (EIGAN), a generalized private representation learning (PRL) architecture that accounts for multiple ally and adversary attributes, unlike existing PRL solutions. We then address the practical constraints of the distributed datasets by developing Distributed EIGAN (D-EIGAN), the first distributed PRL method that learns a private representation at each node without transmitting the source data. We theoretically analyze the behavior of adversaries under the optimal EIGAN and D-EIGAN encoders and the impact of dependencies among ally and adversary tasks on the optimization objective. Our experiments on various datasets demonstrate the advantages of EIGAN in terms of performance, robustness, and scalability. In particular, EIGAN outperforms the previous state-of-the-art by a significant accuracy margin (47% improvement), and D-EIGAN's performance is consistently on par with EIGAN under different network settings.</p> <p><br></p> <p>We next tackle the latter objective - reducing the communication latency - and propose two timescale hybrid federated learning (TT-HF), a semi-decentralized learning architecture that combines the conventional device-to-server communication paradigm for federated learning with device-to-device (D2D) communications for model training. In TT-HF, during each global aggregation interval, devices (i) perform multiple stochastic gradient descent iterations on their individual datasets, and (ii) aperiodically engage in consensus procedure of their model parameters through cooperative, distributed D2D communications within local clusters. With a new general definition of gradient diversity, we formally study the convergence behavior of TT-HF, resulting in new convergence bounds for distributed ML. We leverage our convergence bounds to develop an adaptive control algorithm that tunes the step size, D2D communication rounds, and global aggregation period of TT-HF over time to target a sublinear convergence rate of O(1/t) while minimizing network resource utilization. Our subsequent experiments demonstrate that TT-HF significantly outperforms the current art in federated learning in terms of model accuracy and/or network energy consumption in different scenarios where local device datasets exhibit statistical heterogeneity. Finally, our numerical evaluations demonstrate robustness against outages caused by fading channels, as well favorable performance with non-convex loss functions.</p>
33

Generative Image-to-Image Translation with Applications in Computational Pathology

Fangda Li (17272816) 24 October 2023 (has links)
<p dir="ltr">Generative Image-to-Image Translation (I2IT) involves transforming an input image from one domain to another. Typically, this transformation retains the content in the input image while adjusting the domain-dependent style elements. Generative I2IT finds utility in a wide range of applications, yet its effectiveness hinges on adaptations to the unique characteristics of the data at hand. This dissertation pushes the boundaries of I2IT by applying it to stain-related problems in computational pathology. Particularly, the main contributions span two major applications of stain translation: H&E-to-H&E and H&E-to-IHC, each with its unique requirements and challenges. More specifically, the first contribution addresses the generalization challenge posed by the high variability in H&E stain appearances to any task-specific machine learning models. To this end, the Generative Stain Augmentation Network (G-SAN) is introduced to augment the training images in any downstream task with random and diverse H&E stain appearances. Experimental results demonstrate G-SAN’s ability to enhance model generalization across stain variations in downstream tasks. The second key contribution in this dissertation focuses on H&E-to-IHC stain translation. The major challenge in learning accurate H&E-to-IHC stain translation is the frequent and sometimes severe inconsistencies in the groundtruth H&E-IHC image pairs. To make training more robust to these inconsistencies, a novel contrastive learning based loss, named the Adaptive Supervised PatchNCE (ASP) loss is presented. Experimental results suggest that the proposed ASP-based framework outperforms the state-of-the-art in H&E-to-IHC stain translation by significant margins. Additionally, a new dataset for H&E-to-IHC translation – the Multi-IHC Stain Translation (MIST) dataset, is released to the public, featuring paired images from H&E to four different IHC stains. For future directions of generative I2IT in stain translation problems, a proof-of-concept study of applying the latest diffusion model based I2IT methods to the problem of virtual H&E staining is presented.</p>
34

<b>Advanced Algorithms for X-ray CT Image Reconstruction and Processing</b>

Madhuri Mahendra Nagare (17897678) 05 February 2024 (has links)
<p dir="ltr">X-ray computed tomography (CT) is one of the most widely used imaging modalities for medical diagnosis. Improving the quality of clinical CT images while keeping the X-ray dosage of patients low has been an active area of research. Recently, there have been two major technological advances in the commercial CT systems. The first is the use of Deep Neural Networks (DNN) to denoise and sharpen CT images, and the second is use of photon counting detectors (PCD) which provide higher spectral and spatial resolution compared to the conventional energy-integrating detectors. While both techniques have potential to improve the quality of CT images significantly, there are still challenges to improve the quality further.</p><p dir="ltr"><br></p><p dir="ltr">A denoising or sharpening algorithm for CT images must retain a favorable texture which is critically important for radiologists. However, commonly used methodologies in DNN training produce over-smooth images lacking texture. The lack of texture is a systematic error leading to a biased estimator.</p><p><br></p><p dir="ltr">In the first portion of this thesis, we propose three algorithms to reduce the bias, thereby to retain the favorable texture. The first method proposes a novel approach to designing a loss function that penalizes bias in the image more while training a DNN, producing more texture and detail in results. Our experiments verify that the proposed loss function outperforms the commonly used mean squared error loss function. The second algorithm proposes a novel approach to designing training pairs for a DNN-based sharpener. While conventional sharpeners employ noise-free ground truth producing over-smooth images, the proposed Noise Preserving Sharpening Filter (NPSF) adds appropriately scaled noise to both the input and the ground truth to keep the noise texture in the sharpened result similar to that of the input. Our evaluations show that the NPSF can sharpen noisy images while producing desired noise level and texture. The above two algorithms merely control the amount of texture retained and are not designed to produce texture that matches to a target texture. A Generative Adversarial Network (GAN) can produce the target texture. However, naive application of GANs can introduce inaccurate or even unreal image detail. Therefore, we propose a Texture Matching GAN (TMGAN) that uses parallel generators to separate anatomical features from the generated texture, which allows the GAN to be trained to match the target texture without directly affecting the underlying CT image. We demonstrate that TMGAN generates enhanced image quality while also producing texture that is desirable for clinical application.</p><p><br></p><p dir="ltr">In the second portion of this research, we propose a novel algorithm for the optimal statistical processing of photon-counting detector data for CT reconstruction. Current reconstruction and material decomposition algorithms for photon counting CT are not able to utilize simultaneously both the measured spectral information and advanced prior models. We propose a modular framework based on Multi-Agent Consensus Equilibrium (MACE) to obtain material decomposition and reconstructions using the PCD data. Our method employs a detector agent that uses PCD measurements to update an estimate along with a prior agent that enforces both physical and empirical knowledge about the material-decomposed sinograms. Importantly, the modular framework allows the two agents to be designed and optimized independently. Our evaluations on simulated data show promising results.</p>
35

Deep Synthesis of Distortion-free 3D Omnidirectional Imagery from 2D Images

Christopher K May (18422640) 22 April 2024 (has links)
<p dir="ltr">Omnidirectional images are a way to visualize an environment in all directions. They have a spherical topology and require careful attention when represented by a computer. Namely, mapping the sphere to a plane introduces stretching of the spherical image content, and requires at least one seam in the image to be able to unwrap the sphere. Generative neural networks have shown impressive ability to synthesize images, but generating spherical images is still challenging. Without specific handling of the spherical topology, the generated images often exhibit distorted contents and discontinuities across the seams. We describe strategies for mitigating such distortions during image generation, as well as ensuring the image remains continuous across all boundaries. Our solutions can be applied to a variety of spherical image representations, including cube-maps and equirectangular projections.</p><p dir="ltr">A closely related problem in generative networks is 3D-aware scene generation, wherein the task involves the creation of an environment in which the viewpoint can be directly controlled. Many NeRF-based solutions have been proposed, but they generally focus on generation of single objects or faces. Full 3D environments are more difficult to synthesize and are less studied. We approach this problem by leveraging omnidirectional image synthesis, using the initial features of the network as a transformable foundation upon which to build the scene. By translating within the initial feature space, we correspondingly translate in the output omnidirectional image, preserving the scene characteristics. We additionally develop a regularizing loss based on epipolar geometry to encourage geometric consistency between viewpoints. We demonstrate the effectiveness of our method with a structure-from-motion-based reconstruction metric, along with comparisons to related works.</p>
36

<b>Explaining Generative Adversarial Network Time Series Anomaly Detection using Shapley Additive Explanations</b>

Cher Simon (18324174) 10 July 2024 (has links)
<p dir="ltr">Anomaly detection is an active research field that widely applies to commercial applications to detect unusual patterns or outliers. Time series anomaly detection provides valuable insights into mission and safety-critical applications using ever-growing temporal data, including continuous streaming time series data from the Internet of Things (IoT), sensor networks, healthcare, stock prices, computer metrics, and application monitoring. While Generative Adversarial Networks (GANs) demonstrate promising results in time series anomaly detection, the opaque nature of generative deep learning models lacks explainability and hinders broader adoption. Understanding the rationale behind model predictions and providing human-interpretable explanations are vital for increasing confidence and trust in machine learning (ML) frameworks such as GANs. This study conducted a structured and comprehensive assessment of post-hoc local explainability in GAN-based time series anomaly detection using SHapley Additive exPlanations (SHAP). Using publicly available benchmarking datasets approved by Purdue’s Institutional Review Board (IRB), this study evaluated state-of-the-art GAN frameworks identifying their advantages and limitations for time series anomaly detection. This study demonstrated a systematic approach in quantifying the extent of GAN-based time series anomaly explainability, providing insights for businesses when considering adopting generative deep learning models. The presented results show that GANs capture complex time series temporal distribution and are applicable for anomaly detection. The analysis from this study shows SHAP can identify the significance of contributing features within time series data and derive post-hoc explanations to quantify GAN-detected time series anomalies.</p>
37

Investigation of Backdoor Attacks and Design of Effective Countermeasures in Federated Learning

Agnideven Palanisamy Sundar (11190282) 03 September 2024 (has links)
<p dir="ltr">Federated Learning (FL), a novel subclass of Artificial Intelligence, decentralizes the learning process by enabling participants to benefit from a comprehensive model trained on a broader dataset without direct sharing of private data. This approach integrates multiple local models into a global model, mitigating the need for large individual datasets. However, the decentralized nature of FL increases its vulnerability to adversarial attacks. These include backdoor attacks, which subtly alter classification in some categories, and byzantine attacks, aimed at degrading the overall model accuracy. Detecting and defending against such attacks is challenging, as adversaries can participate in the system, masquerading as benign contributors. This thesis provides an extensive analysis of the various security attacks, highlighting the distinct elements of each and the inherent vulnerabilities of FL that facilitate these attacks. The focus is primarily on backdoor attacks, which are stealthier and more difficult to detect compared to byzantine attacks. We explore defense strategies effective in identifying malicious participants or mitigating attack impacts on the global model. The primary aim of this research is to evaluate the effectiveness and limitations of existing server-level defenses and to develop innovative defense mechanisms under diverse threat models. This includes scenarios where the server collaborates with clients to thwart attacks, cases where the server remains passive but benign, and situations where no server is present, requiring clients to independently minimize and isolate attacks while enhancing main task performance. Throughout, we ensure that the interventions do not compromise the performance of both global and local models. The research predominantly utilizes 2D and 3D datasets to underscore the practical implications and effectiveness of proposed methodologies.</p>
38

ANALYSIS OF LATENT SPACE REPRESENTATIONS FOR OBJECT DETECTION

Ashley S Dale (8771429) 03 September 2024 (has links)
<p dir="ltr">Deep Neural Networks (DNNs) successfully perform object detection tasks, and the Con- volutional Neural Network (CNN) backbone is a commonly used feature extractor before secondary tasks such as detection, classification, or segmentation. In a DNN model, the relationship between the features learned by the model from the training data and the features leveraged by the model during test and deployment has motivated the area of feature interpretability studies. The work presented here applies equally to white-box and black-box models and to any DNN architecture. The metrics developed do not require any information beyond the feature vector generated by the feature extraction backbone. These methods are therefore the first methods capable of estimating black-box model robustness in terms of latent space complexity and the first methods capable of examining feature representations in the latent space of black box models.</p><p dir="ltr">This work contributes the following four novel methodologies and results. First, a method for quantifying the invariance and/or equivariance of a model using the training data shows that the representation of a feature in the model impacts model performance. Second, a method for quantifying an observed domain gap in a dataset using the latent feature vectors of an object detection model is paired with pixel-level augmentation techniques to close the gap between real and synthetic data. This results in an improvement in the model’s F1 score on a test set of outliers from 0.5 to 0.9. Third, a method for visualizing and quantifying similarities of the latent manifolds of two black-box models is used to correlate similar feature representation with increase success in the transferability of gradient-based attacks. Finally, a method for examining the global complexity of decision boundaries in black-box models is presented, where more complex decision boundaries are shown to correlate with increased model robustness to gradient-based and random attacks.</p>

Page generated in 0.0973 seconds