• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 25
  • 16
  • 11
  • 8
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 283
  • 255
  • 106
  • 76
  • 53
  • 47
  • 45
  • 40
  • 39
  • 32
  • 29
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimization of a Micro Aerial Vehicle Planform Using Genetic Algorithms

Day, Andrew Hunter 01 June 2007 (has links)
"Micro aerial vehicles (MAV) are small remotely piloted or autonomous aircraft. Wingspans of MAVs can be as small as six inches to allow MAV’s to avoid detection during reconnaissance missions. Improving the aerodynamic efficiency of MAV’s by increasing the lift to drag ratio could lead to increased MAV range and endurance or future decreases in aircraft size. In this project, biologically inspired flight is used as a framework to improve MAV performance since MAV’s operate in a similar flight regime to birds. A novel wind tunnel apparatus was constructed that allows the planform shape of a MAV wing to be easily altered. The scale-model wing mimics a bird wing by using variable feather lengths to vary the wing planform shape. Genetic algorithms that use natural selection as an optimization process were applied to establish successive populations of candidate wing shapes. These wing shapes were tested in the wind tunnel where wings with higher fitness values were allowed to ‘breed’ and create a next generation of wings. After numerous generations were tested an acceptably strong solution was found that yielded a lift to drag ratio of 3.28. This planform was a non conventional planform that further emphasized the ability of a genetic algorithm to find a novel solution to a complex problem. Performance of the best planform was compared to previously published data for conventional MAV planform shapes. Results of this comparison show that while the highest lift to drag ratio found from the genetic algorithm is lower than published data, inabilities of the test wing to accurately represent a flat plate Zimmerman planform and limitations of the test setup can account for these discrepancies."
42

Hot-Wire Anemometer Measurements of Atmospheric Surface Layer Turbulence via Unmanned Aerial Vehicle

Canter, Caleb A. 01 January 2019 (has links)
An instrumented unmanned aerial vehicle (UAV) was developed and employed to observe the full range of turbulent motions that exist within the inertial subrange of atmospheric surface layer turbulence. The UAV was host to a suite of pressure, temperature, humidity, and wind sensors which provide the necessary data to calculate the variety of turbulent statistics that characterize the flow. Flight experiments were performed with this aircraft, consisting of a large square pattern at an altitude of 100 m above ground level. In order to capture the largest turbulent scales it was necessary to maximize the size of the square pattern. The smallest turbulent scales, on the other hand, were measured through the use of a fast response constant temperature hot wire anemometer. The results demonstrates that the UAV system is capable of directly measuring the full inertial subrange of the atmospheric surface layer with high resolution and allowing for the turbulence dissipation rate to be calculated directly.
43

Intégration d'actionneurs à base de polymères conducteurs électroniques pour des applications aux microsystèmes

Khaldi, Alexandre 23 February 2012 (has links)
L’objectif de ce travail est la réalisation de nouveaux microactionneurs à base depolymère conducteur électronique pouvant être envisagés pour une application denanodrone à ailes battantes.Deux réseaux interpénétrés de polymères (RIPs) POE/PTHF (poly(oxyded’éthylène)/polytétrahydrofurane) et POE/NBR (poly(oxyde d’éthylène/Nitrile Butadiene Rubber) ont été synthétisés et caractérisés. Par le contrôle de la synthèse de ces RIPs,une co-continuité de phase des deux réseaux partenaires a pu être obtenue. Ce travail a ainsi permis l’obtention de matériaux combinant les propriétés propres de chaque réseau, une bonne conductivité ionique (POE) et de bonnes propriétés mécaniques (PTHF et NBR). Les propriétés mécaniques du matériau ont permis de réaliser des matériaux polymères support d’électrolyte manipulables avec des épaisseurs inférieures à 10 μm.Des RIPs conducteurs ont pu être élaborés à partir de ces matériaux en incorporant le polymère conducteur électronique (poly(3,4-éthylènedioxythiophène) - PEDOT), par une dispersion non homogène à partir de la surface vers l’intérieur du film. Après incorporation d’un liquide ionique (le 1-éthyl-3-méthylimidazolium bis-(trifluorométhylsulfonyl)imide ou EMImTFSI), ces matériaux électroactifs ont été caractérisés et ont montré qu’ils pouvaient actionner à des fréquences élevées (100Hz) par rapport aux autres dispositifs de ce type.La mise en forme micrométrique de ces matériaux a ensuite été réalisée par un procédé propre aux microsystèmes. Les techniques de photolithographie et de gravure ionique réactive ont été adaptées et étudiées pour l’élaboration de ces microactionneurs. Un mécanisme de dégradation chimique du matériau a été proposé afin d’expliquer l’étape de gravure. Enfin, la caractérisation des microactionneurs a ensuite aussi été réalisée.La force développée par ces microactionneurs est de l’ordre du μN et le pourcentage de déformation est de 1,8 %. / The aim of this work is the realization of new microactuators based on electronicconducting polymer (ECP) for a flapping wing nano-aerial vehicle.Two Interpenetrating Polymer Networks (IPNs) PEO/PTHF(polyethyleneoxide/polytetrahydrofurane) and PEO/NBR (polyethyleneoxide/NitrileButadiene Rubber) were synthesized and characterized. By controlling the synthesis of these IPNs, a phase co-continuity of the two networks could be obtained. This work has enabled the production of materials combining the specific properties of each network, good ionic conductivity (PEO) and good mechanical properties (PTHF and NBR). The mechanical properties of the material allowed the synthesis of solid polymer electrolyte materials that can be elaborated and manipulated with thicknesses below 10 microns.The conducting IPNs are synthesized from previous IPNs in which the conductingpolymer (poly(3,4-ethylenedioxythiophene)), PEDOT, is non homogeneously dispersed i.e. the content decreases from the outside towards the center of the film.After incorporation of an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide or EMImTFSI), these electroactive materials werecharacterized and showed their capacity to operate at frequency high frequency (100 Hz) compared to others systems in literature.The micrometer shaping of these materials was then carried out by processes specific to microsystems. Photolithography techniques and Reactive Ion Etching (RIE) have been adapted and designed for the development of microactuators. A chemical degradation mechanism of the material has been proposed to explain the etching step. Finally, the characterization of microactuators have been carried out. The force developed by these microactuators is in the range of N and the bending strain has reached 1.8%.
44

gRAID: A Geospatial Real-Time Aerial Image Display for a Low-Cost Autonomous Multispectral Remote Sensing

Jensen, Austin M. 01 May 2009 (has links)
Remote sensing helps many applications like precision irrigation, habitat mapping, and traffic monitoring. However, due to shortcomings of current remote sensing platforms - like high cost, low spatial, and temporal resolution - many applications do not have access to useful remote sensing data. A team at the Center for Self-Organizing and Intelligent Systems (CSOIS) together with the Utah Water Research Laboratory (UWRL) at Utah State University has been developing a new remote sensing platform to deal with these shortcomings in order to give more applications access to remote sensing data. This platform (AggieAir) is low cost, fully autonomous, easy to use, independent of a runway, has a fast turnover time, and a high spatial resolution. A program called the Geospatial Real-Time Aerial Image Display (gRAID) has also been developed to process the images taken from AggieAir. gRAID is able to correct the camera lens distortion, georeference, and display the images on a 3D globe, and export them in a conventional Geographic Information System (GIS) format for further processing. AggieAir and gRAID prove to be innovative and useful tools for remote sensing.
45

Unmanned Aerial Vehicle Tracking System with Out-Of-Sequence Measurement in a Discrete Time-Delayed Extended Kalman Filter

Lora, Roque 01 May 2017 (has links)
The goal of this thesis is to extend the delayed Kalman filter so it can be used with non-linear systems and that it can handle randomized delays on the measurements. In the particular case of this study, the filter is used to estimates the states of an unmanned aerial system. The outputs of the filter are used to point an antenna and a camera towards a UAS. Different scenarios are simulated for the purpose of comparing the efficiency of this technique in various situations.
46

Architecture, Inertial Navigation, and Payload Designs for Low-Cost Unmanned Aerial Vehicle-Based Personal Remote Sensing

Coopmans, Calvin 01 May 2010 (has links)
This thesis presents work done towards a Personal Remote Sensing (PRS) system: small Unmanned Aerial Vehicles (UAVs) with electronic, control, and sensing subsystems. Based on papers presented to conferences (AutoTestCon2008 and MESA2009), as well as other work on PRS, multiple levels of engineering are detailed: complex multi-UAV data flow; attitude estimation filters; real-time microprocessor functionality; and small, mobile power systems. Wherever possible, Open-Source tools and designs have been used, modified, or studied, providing excellent cost to performance ratios in most cases. First, the overall PRS UAV architecture, AggieAir, is presented with a motivating examples (GhostEye and EagleEye camera payloads). Then, AggieNav, an inertial navigation system for small UAVs, is detailed, along with information about a Kalman filter for estimation of UAV navigation, position, and attitude. Finally the Spatial Environment Autonomous Logger (SEAL), a general-purpose wireless datalogger for small UAV applications, is presented, with application examples with and without small UAVs. This work represents designs based on two years of organic small UAV system growth, and provides integrated solutions to many problems of small UAV communication, sensing, and control.
47

Angle-only based collision risk assessment for unmanned aerial vehicles / Vinkelbaserad kollisionsriskbedömning för obemannade flygfarkoster

Lindsten, Fredrik January 2008 (has links)
<p>This thesis investigates the crucial problem of collision avoidance for autonomous vehicles.  An anti-collision system for an unmanned aerial vehicle (UAV) is studied in particular. The purpose of this system is to make sure that the own vehicle avoids collision with other aircraft in mid-air. The sensor used to track any possible threat is for a UAV limited basically to a digital video camera. This sensor can only measure the direction to an intruding vehicle, not the range, and is therefore denoted an angle-only sensor. To estimate the position and velocity of the intruder a tracking system, based on an extended Kalman filter, is used. State estimates supplied by this system are very uncertain due to the difficulties of angle-only tracking. Probabilistic methods are therefore required for risk calculation. The risk assessment module is one of the essential parts of the collision avoidance system and has the purpose of continuously evaluating the risk for collision. To do this in a probabilistic way, it is necessary to assume a probability distribution for the tracking system output. A common approach is to assume normality, more out of habit than on actual grounds. This thesis investigates the normality assumption, and it is found that the tracking output rapidly converge towards a good normal distribution approximation. The thesis furthermore investigates the actual risk assessment module to find out how the collision risk should be determined. The traditional way to do this is to focus on a critical time point (time of closest point of approach, time of maximum collision risk etc.). A recently proposed alternative is to evaluate the risk over a horizon of time. The difference between these two concepts is evaluated. An approximate computational method for integrated risk, suitable for real-time implementations, is also validated. It is shown that the risk seen over a horizon of time is much more robust to estimation accuracy than the risk from a critical time point. The integrated risk also gives a more intuitively correct result, which makes it possible to implement the risk assessment module with a direct connection to specified aviation safety rules.</p>
48

Evaluation of Position Sensing Techniques for an Unmanned Aerial Vehicle / Utvärdering av positionsbestämningstekniker för en obemannad flygande farkost (UAV)

Alkeryd, Martin January 2006 (has links)
<p>The use of Unmanned Aerial Vehicles (UAVs) has rapidly increased over the last years. This has been possible mainly due to the increased computing power of microcontrollers and computers. An UAV can be used in both civilian and military areas, for example surveillance and intelligence. The UAV concerned in this master's thesis is a prototype and is currently being developed at DST Control AB in Linköping.</p><p>With the use of UAVs, the need for a positioning and navigation system arises. Inertial sensors can often give a good position estimation, however, they need continuous calibration due to error build-up and drift in gyros. An external reference is needed to correct for this drift and other errors. The positioning system investigated in this master's thesis is supposed to work in an area defined by an inverted cone with the height of 25m and a diameter of 10m.</p><p>A comparison of different techniques suitable for position sensing has been performed. These techniques include the following: a radio method based on the Instrument Landing System (ILS), an optical method using a Position Sensing Detector (PSD), an optical method using the Indoor GPS system, a distance measurement method with ultrasound and also a discussion of the Global Positioning System (GPS).</p><p>An evaluation system has been built using the PSD sensor and tests have been performed to evaluate its possibilities for positioning. Accuracy in the order of a few millimetres has been achieved in position estimation with the evaluation system.</p>
49

Cooperative UAV Search and Intercept

Sun, Andrew 22 September 2009 (has links)
In this thesis, a solution to the multi-Unmanned Aerial Vehicle (UAV) search and intercept problem for a moving target is presented. For the search phase, an adapted diffusion-based algorithm is used to manage the target uncertainty while individual UAVs are controlled with a hybrid receding horizon / potential method. The coordinated search is made possible by an uncertainty weighting process. The team intercept phase algorithm is a behavioural approach based on the analytical solution of Isaac's Single-Pursuer/Single-Evader (SPSE) homicidal chau ffeur problem. In this formulation, the intercepting control is taken to be a linear combination of the individual SPSE controls that would exist for each of the evader/pursuer pairs. A particle swarm optimizer is applied to find approximate optimal weighting coefficients for discretized intervals of the game time. Simulations for the team search, team intercept and combined search and intercept problem are presented.
50

Cooperative UAV Search and Intercept

Sun, Andrew 22 September 2009 (has links)
In this thesis, a solution to the multi-Unmanned Aerial Vehicle (UAV) search and intercept problem for a moving target is presented. For the search phase, an adapted diffusion-based algorithm is used to manage the target uncertainty while individual UAVs are controlled with a hybrid receding horizon / potential method. The coordinated search is made possible by an uncertainty weighting process. The team intercept phase algorithm is a behavioural approach based on the analytical solution of Isaac's Single-Pursuer/Single-Evader (SPSE) homicidal chau ffeur problem. In this formulation, the intercepting control is taken to be a linear combination of the individual SPSE controls that would exist for each of the evader/pursuer pairs. A particle swarm optimizer is applied to find approximate optimal weighting coefficients for discretized intervals of the game time. Simulations for the team search, team intercept and combined search and intercept problem are presented.

Page generated in 0.0516 seconds