• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seleção de leveduras para bioconversão de D-xilose em xilitol / Yeast selection for bioconversion of D-xylose to xilitol

Lourenço, Marcus Venicius de Mello 15 January 2010 (has links)
Espécies microbianas, em especial as leveduras, são de grande importância para a produção de xilitol. A produção de xilitol envolve uma complicada regulação metabólica, incluindo o transporte de D-xilose, produção de enzimas fundamentais e cofator de regeneração. Assim, a triagem de microorganismos que consomem naturalmente D-xilose se torna uma maneira viável e eficaz para se obter organismos com possível aplicação industrial para a produção de xilitol. Neste trabalho foram isoladas vinte e oito leveduras provenientes do ambiente industrial da produção de etanol (torta de filtro) com habilidade de consumir D-xilose. O seqüenciamento e a identificação pela análise da região D1/D2 do gene do rDNA 26S demonstraram que todas pertencem ao gênero Candida, sendo 24 linhagens (85.71%) C. tropicalis e 4 linhagens (14.29%) C. rugosa. Das 28 linhagens isoladas, cinco linhagens de leveduras foram escolhidas aleatóriamente para o ensaio de bioconversão de D-xilose em xilitol devido ao fato das mesmas apresentarem velocidade de crescimento em D-xilose semelhantes. As linhagens selecionadas para o ensaio foram: Candida tropicalis MVP 03, Candida tropicalis MVP 16, Candida rugosa MVP 17, Candida rugosa MVP 21, Candida tropicalis MVP 40, pois representam bem a amostragem. Três leveduras pertencentes à coleção do Departamento de Ciências Biológicas da ESALQ / USP (kluyveromyces marxianus IZ 1339, Candida tropicalis IZ 1824 e Candida guilliermondii FTI 20037) foram utlizadas nos ensaios para obtenção de xilitol a partir da bioconversão da D-xilose como controle positivo. Para a formação de xilitol em meio sintético utilizando D-xilose como única fonte de carbono. Foram realizados ensaios da cinética de crescimento durante 96 horas de fermentação. Na primeira triagem, para a avaliação da melhor condição nutricional para o ensaio, as leveduras foram cultivadas em três meios quimicamente definidos: YNB 6.7 g L-1, UPX (uréia 2.3 g L-1 e peptona 6.6 g L-1) MCX (KH2PO4 0,62 g L-1; K2HPO4 2,0 g L-1; (NH4)2SO4 1,0 g L-1 MgSO4 1,1 g L-1, extrato de levedura 0.5 g L-1) acrescidos de 20 g L-1 de D-xilose, a 30°C e 120 rpm. O meio UPX apresentou o melhor rendimento, com uma produtividade volumetrica (Qp) entre 0,004 a 0,09, fator de conversão de xilose em xilitol (Yp/s) entre 0,23 a 0,28 g g-1, fator de conversão de D-xilose em biomassa (Yx/s) entre 0.20 a 0.24 g g-1, com uma eficiência de 10 conversão (h) entre 21% a 26%.As leveduras C. tropicalis MVP 03; C. tropicalis MVP 16; C. rugosa MVP 17; C. rugosa MVP 21; C. tropicalis MVP 40 foram avaliadas em uma triagem, em meio UPX, com padronização do inóculo inicial. Para os cinco isolados, a produção de xilitol variou de 5,76 a 32,97 g L-1, a partir de 50 g L-1 de D-xilose com produtividade (Qp) de 0,06 a 0,35 g L-1 h-1, fator de conversão de xilose em xilitol (Yp/s) de 0,14 a 0,65 g g-1, fator de conversão de D-xilose em biomassa (Yx/s) de 0,08 a 0,29 g g-1 e a eficiência de conversão (h) entre 6% e 61% que foi calculado segundo Barbosa et al 1988. Destacou-se a levedura C. tropicalis 16, produzindo 32,97 g L-1 de xilitol com um Qp de 0,35 g L-1 h-1, Yp/s de 0,65 g g-1, Y x/s de 0,11 g g-1 e eficiência de conversão (h) de 61 %. / Microbial species, particularly yeast, are of great importance for the production of xylitol. The xylitol production involves complicated metabolic regulation, including the transport of D-xylose, production of key enzymes and cofactor regeneration. Thus, screening of microorganisms that consume D-xylose naturally becomes a viable and effective way to obtain organisms with industrial application for the production of xylitol. In this work we isolated twenty-eight yeasts from the environment of the industrial production of ethanol (filter cake) with capacity to consume D-xylose. The sequencing and identification by analysis of the D1/D2 region of 26S rDNA gene showed that all belong to the genus Candida, and 24 strains (85.71%) C. tropicalis and 4 strains (14.29%) C. rugosa. Of the 28 isolates, five strains of yeast were selected randomly to test the bioconversion of D-xylose to xylitol due to the fact that they present rate of growth in D-xylose similar. The lines selected for testing were: Candida tropicalis MVP 03, Candida tropicalis MVP 16, Candida rugosa MVP 17, Candida rugosa MVP 21, Candida tropicalis MVP 40, and they represent a sampling. Three yeasts from the collection of the Department of Biological Sciences, ESALQ / USP (Kluyveromyces marxianus IZ 1339, Candida tropicalis IZ 1824 and Candida guilliermondii FTI 20037), used were the tests to obtain xylitol from the bioconversion of D-xylose as positive control, for the formation of xylitol in a synthetic medium using D-xylose as sole carbon source. Assays were performed in the kinetics of growth during 96 hours of fermentation. In the first evaluation, the evaluation of the best nutritional condition in the test, yeast cells were grown in three chemically defined media: YNB 6.7 g L-1, UPX (urea 2.3 g L-1 peptone and 6.6 g L-1) MCX ( KH2PO4 0.62 g L-1, K2HPO4 2.0 g L-1, (NH4)2SO4 1.0 g L-1 MgSO4 1.1 g L-1, yeast extract 0.5 g L-1) plus 20 g L-1 D-xylose at 30°C and 120 rpm. Mean UPX showed the best performance with a volumetric productivity (Qp) from 0.004 to 0.09, the conversion factor of xylose to xylitol (Yp/s) between 0,23 to 0,28 g g-1 conversion factor D-xylose in biomass (Yx/s) between 0.20 to 0.24 g g-1 Yeasts 0,20 to 0,24 g g-1, with a conversion efficiency (h) between 21% to 26%. C. tropicalis MVP 03, C. tropicalis MVP 16, C. rugosa MVP 17, C. rugosa MVP 21, C. tropicalis MVP 40 were evaluated in a screening, in media UPX, with standardization of initial inoculation. For 12 five isolates, the production of xylitol varied from 5.76 to 32.97 g L-1, from 50 g L-1 Dxylose with productivity (Qp) of 0.06 to 0,35 g L-1 h-1, the conversion factor of xylose to xylitol (Yp/s) 0.14 to 0.65 g g-1, the conversion factor of D-xylose in biomass (Yx/s) from 0.08 to 0.29 g g-1 and conversion efficiency (h) between 6% and 61% which was calculated according to Barbosa et al 1988. They outlined the yeast C. tropicalis MVP16, yielding 32.97 g L-1 of xylitol with a Qp of 0.35 g L-1 h-1, Yp/s to 0.65 g g-1, Y x/s of 0.11 g g -1 and conversion efficiency (h) of 61%.
2

Seleção de leveduras para bioconversão de D-xilose em xilitol / Yeast selection for bioconversion of D-xylose to xilitol

Marcus Venicius de Mello Lourenço 15 January 2010 (has links)
Espécies microbianas, em especial as leveduras, são de grande importância para a produção de xilitol. A produção de xilitol envolve uma complicada regulação metabólica, incluindo o transporte de D-xilose, produção de enzimas fundamentais e cofator de regeneração. Assim, a triagem de microorganismos que consomem naturalmente D-xilose se torna uma maneira viável e eficaz para se obter organismos com possível aplicação industrial para a produção de xilitol. Neste trabalho foram isoladas vinte e oito leveduras provenientes do ambiente industrial da produção de etanol (torta de filtro) com habilidade de consumir D-xilose. O seqüenciamento e a identificação pela análise da região D1/D2 do gene do rDNA 26S demonstraram que todas pertencem ao gênero Candida, sendo 24 linhagens (85.71%) C. tropicalis e 4 linhagens (14.29%) C. rugosa. Das 28 linhagens isoladas, cinco linhagens de leveduras foram escolhidas aleatóriamente para o ensaio de bioconversão de D-xilose em xilitol devido ao fato das mesmas apresentarem velocidade de crescimento em D-xilose semelhantes. As linhagens selecionadas para o ensaio foram: Candida tropicalis MVP 03, Candida tropicalis MVP 16, Candida rugosa MVP 17, Candida rugosa MVP 21, Candida tropicalis MVP 40, pois representam bem a amostragem. Três leveduras pertencentes à coleção do Departamento de Ciências Biológicas da ESALQ / USP (kluyveromyces marxianus IZ 1339, Candida tropicalis IZ 1824 e Candida guilliermondii FTI 20037) foram utlizadas nos ensaios para obtenção de xilitol a partir da bioconversão da D-xilose como controle positivo. Para a formação de xilitol em meio sintético utilizando D-xilose como única fonte de carbono. Foram realizados ensaios da cinética de crescimento durante 96 horas de fermentação. Na primeira triagem, para a avaliação da melhor condição nutricional para o ensaio, as leveduras foram cultivadas em três meios quimicamente definidos: YNB 6.7 g L-1, UPX (uréia 2.3 g L-1 e peptona 6.6 g L-1) MCX (KH2PO4 0,62 g L-1; K2HPO4 2,0 g L-1; (NH4)2SO4 1,0 g L-1 MgSO4 1,1 g L-1, extrato de levedura 0.5 g L-1) acrescidos de 20 g L-1 de D-xilose, a 30°C e 120 rpm. O meio UPX apresentou o melhor rendimento, com uma produtividade volumetrica (Qp) entre 0,004 a 0,09, fator de conversão de xilose em xilitol (Yp/s) entre 0,23 a 0,28 g g-1, fator de conversão de D-xilose em biomassa (Yx/s) entre 0.20 a 0.24 g g-1, com uma eficiência de 10 conversão (h) entre 21% a 26%.As leveduras C. tropicalis MVP 03; C. tropicalis MVP 16; C. rugosa MVP 17; C. rugosa MVP 21; C. tropicalis MVP 40 foram avaliadas em uma triagem, em meio UPX, com padronização do inóculo inicial. Para os cinco isolados, a produção de xilitol variou de 5,76 a 32,97 g L-1, a partir de 50 g L-1 de D-xilose com produtividade (Qp) de 0,06 a 0,35 g L-1 h-1, fator de conversão de xilose em xilitol (Yp/s) de 0,14 a 0,65 g g-1, fator de conversão de D-xilose em biomassa (Yx/s) de 0,08 a 0,29 g g-1 e a eficiência de conversão (h) entre 6% e 61% que foi calculado segundo Barbosa et al 1988. Destacou-se a levedura C. tropicalis 16, produzindo 32,97 g L-1 de xilitol com um Qp de 0,35 g L-1 h-1, Yp/s de 0,65 g g-1, Y x/s de 0,11 g g-1 e eficiência de conversão (h) de 61 %. / Microbial species, particularly yeast, are of great importance for the production of xylitol. The xylitol production involves complicated metabolic regulation, including the transport of D-xylose, production of key enzymes and cofactor regeneration. Thus, screening of microorganisms that consume D-xylose naturally becomes a viable and effective way to obtain organisms with industrial application for the production of xylitol. In this work we isolated twenty-eight yeasts from the environment of the industrial production of ethanol (filter cake) with capacity to consume D-xylose. The sequencing and identification by analysis of the D1/D2 region of 26S rDNA gene showed that all belong to the genus Candida, and 24 strains (85.71%) C. tropicalis and 4 strains (14.29%) C. rugosa. Of the 28 isolates, five strains of yeast were selected randomly to test the bioconversion of D-xylose to xylitol due to the fact that they present rate of growth in D-xylose similar. The lines selected for testing were: Candida tropicalis MVP 03, Candida tropicalis MVP 16, Candida rugosa MVP 17, Candida rugosa MVP 21, Candida tropicalis MVP 40, and they represent a sampling. Three yeasts from the collection of the Department of Biological Sciences, ESALQ / USP (Kluyveromyces marxianus IZ 1339, Candida tropicalis IZ 1824 and Candida guilliermondii FTI 20037), used were the tests to obtain xylitol from the bioconversion of D-xylose as positive control, for the formation of xylitol in a synthetic medium using D-xylose as sole carbon source. Assays were performed in the kinetics of growth during 96 hours of fermentation. In the first evaluation, the evaluation of the best nutritional condition in the test, yeast cells were grown in three chemically defined media: YNB 6.7 g L-1, UPX (urea 2.3 g L-1 peptone and 6.6 g L-1) MCX ( KH2PO4 0.62 g L-1, K2HPO4 2.0 g L-1, (NH4)2SO4 1.0 g L-1 MgSO4 1.1 g L-1, yeast extract 0.5 g L-1) plus 20 g L-1 D-xylose at 30°C and 120 rpm. Mean UPX showed the best performance with a volumetric productivity (Qp) from 0.004 to 0.09, the conversion factor of xylose to xylitol (Yp/s) between 0,23 to 0,28 g g-1 conversion factor D-xylose in biomass (Yx/s) between 0.20 to 0.24 g g-1 Yeasts 0,20 to 0,24 g g-1, with a conversion efficiency (h) between 21% to 26%. C. tropicalis MVP 03, C. tropicalis MVP 16, C. rugosa MVP 17, C. rugosa MVP 21, C. tropicalis MVP 40 were evaluated in a screening, in media UPX, with standardization of initial inoculation. For 12 five isolates, the production of xylitol varied from 5.76 to 32.97 g L-1, from 50 g L-1 Dxylose with productivity (Qp) of 0.06 to 0,35 g L-1 h-1, the conversion factor of xylose to xylitol (Yp/s) 0.14 to 0.65 g g-1, the conversion factor of D-xylose in biomass (Yx/s) from 0.08 to 0.29 g g-1 and conversion efficiency (h) between 6% and 61% which was calculated according to Barbosa et al 1988. They outlined the yeast C. tropicalis MVP16, yielding 32.97 g L-1 of xylitol with a Qp of 0.35 g L-1 h-1, Yp/s to 0.65 g g-1, Y x/s of 0.11 g g -1 and conversion efficiency (h) of 61%.
3

Scale-Up the Use of a Microbubble Dispersion to Increase Oxygen Transfer in Aerobic Fermentation of Baker's Yeast

Hensirisak, Patcharee Jr. 26 November 1997 (has links)
A microbubble dispersion (MBD) was used to supply oxygen for an aerobic fermentation of Baker's yeast. The 1-liter microbubble dispersion generator supplied bubbles for 20-liter and 50-liter working volume fermentations in a 72-liter pilot scale fermenter. The microbubbles were stabilized by the surfactants naturally present in the culturing broth medium. The growth patterns of yeast Saccharomyces cerevisiae, cultured at agitation speeds of 150 rpm and 500 rpm, were compared for oxygen supplied by ordinary air sparging and by MBD sparging. Both air sparged and MBD systems were supplied air at equivalent volumetric flow rates. The volumetric oxygen transfer coefficients (KLa) were estimated by the yield coefficient method. The KLa values increased from 142.5 to 458.3 h-1 and from 136.1 to 473.3 h-1 for 20- and 50- liter runs, respectively, as the agitation speed was increased from 150 to 500 rpm in the ordinary air sparged fermentations. The oxygen transfer coefficients in the MBD sparged fermentations were found to be independent of the fermenter agitation speed at approximately 480 h-1 for 20-liter runs and 340 h-1 for 50-liter runs. The growth rates for MBD at 150 rpm were essentially equivalent with air sparged fermentations at 500 rpm. The total power consumption per unit volume of broth for the 150 rpm, MBD fermentation was 68% lower than the 500 rpm, air sparged run for the 20-liter fermentations and was 55% lower for the 50-liter fermentations. / Master of Science

Page generated in 0.1232 seconds