• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • Tagged with
  • 20
  • 20
  • 20
  • 14
  • 13
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo da resposta não-estacionária indicial de perfis utilizando ferramentas de CFD

Rodrigo Milaré Granzoto 26 August 2010 (has links)
A aerodinâmica não-estacionária foi muito estudada, principalmente devido aos problemas em Aeroelasticidade. No início do Século XX muitos cientistas como Theodorsen, Sears, Küssner e Wagner se dedicaram a estudar este fenômeno. Tradicionalmente os métodos desenvolvidos para determinar as cargas aerodinâmicas não-estacionárias para escoamentos subsônicos e supersônicos são baseados em formulações lineares. Porém estudos e ensaios mostram que esta premissa deixa de ser válida principalmente no regime transônico, com o resultado da formação de ondas de choque e/ou separações da camada limite causado pela onda de choque do regime transônico, o método linearizado vai ficando progressivamente pior à medida que se aproxima do alto transônico. A mecânica dos fluidos computacional (CFD-computional fluid dynamics) tornou-se uma área de grande importância da Aerodinâmica atual, sendo possível trabalhar com as equações não lineares sem restrições físicas ou geométricas. Este trabalho apresenta o modelamento e análise da resposta indicial de um perfil aerodinâmico exposto a uma perturbação do tipo degrau em ângulo de ataque utilizando ferramentas de CFD. A análise do comportamento quanto a variações de espessura, numero de Mach e amplitude além de, uma comparação com a teoria da aerodinâmica linearizada. Desse modo é possível obter uma sensibilidade quanto à influência desses parâmetros na resposta transiente dos perfis estudados, além de um estudo quanto às capacidades, benefícios e limitações de se utilizar ferramentas de CFD para modelar e estudar fenômenos transientes.
12

Movimentação de malhas computacionais para aplicações tridimensionais em aerodinâmica não estacionária

Marcos Paulo Halal Lombardi 06 July 2015 (has links)
A previsão acurada de fenômenos aerodinâmicos não estacionários tem cada vez mais dependido do emprego de técnicas de Mecânica dos Fluidos Computacional (CFD). A aplicação de tais técnicas em problemas não estacionários depende crucialmente de tecnologias de geração de malha que, usualmente, são processos bastante lentos. Para contornar esta limitação, várias metodologias têm sido desenvolvidas a fim de calcular a dinâmica geométrica do problema físico sem gerar novamente uma malha computacional por completo. Neste sentido, este trabalho apresenta um estudo de técnicas eficientes de geração e movimentação de malhas computacionais para simulação não estacionária em CFD, com aplicações em Aeroelasticidade. Para este propósito, é implementada uma abordagem de movimentação de malhas baseada em Funções de Base Radial (RBF). Nesta metodologia, os deslocamentos dos pontos de malha na superfície da estrutura (móvel) são propagados para os pontos volumétricos (interiores), sem alterar a topologia da malha. Este trabalho conduz uma análise comparativa do emprego de diversos tipos de RBF na movimentação de malhas de níveis de refinamento diferentes, bidimensionais e tridimensionais, no que diz respeito à qualidade da malha deformada resultante. Além disso, aborda estratégias de movimentação e sua influência na qualidade de malha gerada. Como aplicação, é conduzida simulação aerodinâmica computacional com código BREXP3D. Este código utiliza formulação de mecânica dos fluidos não estacionária compressível e não viscosa (equações de Euler), implementada numericamente via método de diferenças finitas, o que exige malhas hexaédricas estruturadas. Este trabalho implementa condições de contorno para simulação de asa tridimensional em malhas monobloco e conduz simulação aerodinâmica estacionária em regime transônico, comparando com resultados experimentais. Problemas de malha e convergência não permitiram executar com sucesso a simulação aerodinâmica computacional não estacionária.
13

Estudo numérico de uma asa com controle ativo de flutter por realimentação da pressão medida num ponto / Numeric study of a wing with flutter active control by feedback of the pressure measured in one point

Tiago Francisco Gomes da Costa 06 July 2007 (has links)
Neste trabalho é desenvolvido um sistema de controle ativo para supressão de flutter de uma asa utilizando-se sensores de pressão em pontos estratégicos de sua superfície. O flutter é um fenômeno aeroelástico que caracteriza um acoplamento instável entre estrutura flexível e escoamento aerodinâmico não estacionário. Quando a modificação da estrutura ou da aerodinâmica da asa não é viável, o uso de sistemas de controle passa a ser uma boa opção. Para o desenvolvimento do sistema de controle proposto, é primeiramente desenvolvido um modelo numérico de asa flexível. Com esse modelo numérico e a pressão na superfície da asa medida em certos pontos e realimentada ao sistema controlador, são determinadas correções no ângulo de uma superfície de controle no bordo de fuga. A tentativa de se utilizar um sistema de controle bem simples, com o uso de um único sensor de pressão, mostra a viabilidade de se implementar um sistema deste tipo em aeronaves reais. Esse sistema pode tornar-se uma alternativa aos desenvolvidos até então com o uso de acelerômetros, além de ser útil em sistemas onde se procura prever o estol e observar o comportamento da distribuição de pressão sobre a asa em vôo. / In this work, a wing flutter suppression active control system using pressure sensors in strategic points is developed. Flutter is an aeroelastic phenomenon characterized by an unstable coupling of a flexible structure and a non-stationary aerodynamic flow. When changes of the wing structure or of the aerodynamics are not viable, the use of automatic control systems becomes a good option. For the developing of the suggested control system, a numeric model of a finite flexible wing is firstly done. With this model and the pressure over the wing surface read in certain points and fedback to the control system, changes of the control surface angle on the trailing edge are determined. The attempt to use a simple control system, with a unique pressure sensor shows the viability of implanting this kind of system in real aircrafts. This system may become an alternative to those developed until now, using accelerometers. Yet, it could be useful, in systems where it is necessary to predict stall and observe the pressure load behavior over the wing in flight.
14

Modelo numérico para simulação da resposta aeroelástica de asas fixas. / Numerical model for the simulation of the aeroelastic response of fixed wings.

Guilherme Ribeiro Benini 28 June 2002 (has links)
Um modelo numérico para simulação da resposta aeroelástica de asas fixas é proposto. A estratégia adotada no trabalho é a de tratar a aerodinâmica e a dinâmica estrutural separadamente e então acoplá-las na equação de movimento. A caracterização dinâmica de uma asa protótipo é feita pelo método dos elementos finitos e a equação de movimento é escrita em função das coordenadas modais. O carregamento aerodinâmico não-estacionário é determinado pelo método de malha de vórtices. A troca de informações entre as malhas estrutural e aerodinâmica é feita através do método de interpolação por splines de superfície e a equação de movimento é resolvida iterativamente no domínio do tempo, utilizando-se um método preditor-corretor. As teorias de aerodinâmica, dinâmica estrutural e do acoplamento entre elas são apresentadas separadamente, juntamente com os respectivos resultados obtidos. A resposta aeroelástica da asa protótipo é representada por curvas de deslocamentos modais em função do tempo para várias velocidades de vôo e a ocorrência de flutter é verificada quando estas curvas divergem (i.e. as amplitudes aumentam progressivamente). Transformadas de Fourier destas curvas mostram o acoplamento de freqüências característico do fenômeno de flutter. / A numerical model for the simulation of the aeroelastic response of fixed wings is proposed. The methodology used in the work is to treat the aerodynamic and the structural dynamics separately and then couple them in the equation of motion. The dynamic characterization of a prototype wing is done by the finite element method and the equation of motion is written in modal coordinates. The unsteady aerodynamic loads are predicted using the vortex lattice method. The exchange of information between the aerodynamic and structural meshes is done by the surface splines interpolation scheme, and the equation of motion is solved interactively in the time domain, employing a predictor-corrector method. The aerodynamic and structural dynamics theories, and the methodology to couple them, are described separately, together with the corresponding obtained results. The aeroelastic response of the prototype wing is represented by time histories of the modal coordinates for different airspeeds, and the flutter occurrence is verified when the time histories diverge (i.e. the amplitudes keep growing). Fast Fourier Transforms of these time histories show the coupling of frequencies, typical of the flutter phenomenon.
15

A study on correction methods for aeroelastic analysis in transonic flow.

Roberto Gil Annes da Silva 00 December 2004 (has links)
The work presents a study of correction techniques to compute unsteady transonic pressure distributions and aeroelastic stability in this flow regime. The methodologies herein investigated are based on corrections of pressure distributions by the weighting of the lifting surface self-induced downwash, resulting from aeroelastic structural displacements or prescribed motions. A number approaches were investigated. An investigation into the linear/nonlinear behavior of unsteady transonic flows was also conducted. It was concluded from such investigation that unsteady transonic flows present a linear behavior with respect to small aeroelastic structural displacements around a steady nonlinear mean flow. Such behavior is the basis for further development of downwash correction methods.The correction of pressure distributions through the weighting of the lifting surface self-induced downwash is also known as downwash weighting method. This method has been enhanced leading to a new downwash correction technique. The procedure may be divided in two steps, where the first step is a nonlinear steady mean flow correction, with nonlinear pressure differences considered as reference conditions to correct the self induced downwash. The second step is the correction of the unsteady component of the downwash, where the corresponding reference unsteady pressure differences are predicted by a linear aerodynamic model, based on the potential flow equations.This extended downwash correction method led to a rational formulation named as "successive kernel expansion method" (SKEM). The unsteady pressures and aeroelastic stability boundaries computations using such method led to good agreement with experimental measurements. This procedure is a rapid form to compute the transonic flutter speed boundaries, compared to computational aeroelasticity and experimental techniques.
16

A new sonic box formulation for oscillating swept thick wings in transonic flow.

Guilherme Augusto Vargas Cesar 00 December 2004 (has links)
The present work shows a mathematical model for unsteady linearized potential flow around thin wings having swept leading and trailing edges and over thick wings with swept and unswept leading edges. Doublet integrals are obtained for the three dimensional case. The wings are supposed to be describing small amplitude harmonic motions of pitch and plunge. Exact solutions for thin and thick wings oscillating on an unsteady potential sonic flow are presented and are compared with other works.
17

Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.

Hugo Stefanio de Almeida 02 December 2010 (has links)
The present work is aimed at studying the influence of viscous effects in transonic aeroelastic analyses. To achieve this goal, a two-dimensional and viscous aeroelastic computational solver, for CAE analysis, is developed, which uses unstructured computational meshes and which is able to capture the main aeroelastic phenomena relevant in the transonic regime of flight. The aeroelastic system considered to test the present methodology is the classical typical section model. The system has two structural degrees of freedom. These are pitching and plunging, or heaving. The structural degrees of freedom can be treated within solver in a coupled manner or separately, in a loosely coupled fashion. The typical section model is an approximation to the treatment of a full wing, in which the airfoil at 75% of the semi-span is analyzed. The structural response is obtained by solving a set of a second order ordinary differential equations in time, with aerodynamic forcing. The coupling of the structural degrees of freedom occurs primarily through the aerodynamic forcing terms. The unsteady aerodynamic problem is treated through the numerical solution of the Reynolds-averaged Navier-Stokes equations. These equations are solved using a finite volume method for unstructured computational grids, which uses a second-order centered spatial discretization and a second order time marching scheme. Turbulence closure is achieved through the Spalart-Allmaras one-equation eddy viscosity turbulence model. A reduction of the computational time for the unsteady aerodynamic simulations is obtained through the implmentation of a few convergence acceleration methods, which include the use of a constant CFL number, implicit residual smoothing and unsteady multigrid methods. The aeroelastic problem is solved through the coupling of the aerodynamic and structural formulations. In the present case, the structural equations are cast in a modal formulation and the unsteady aerodynamic responses are represented by aerodynamic states obtained by rational interpolating polynomials. The complete system of equations is written in state space format in the Laplace domain. The aeroelastic stability condition can, then, be determined by standard eigenvalue analyses of the system dynamic matrix.
18

Análise de flutter em uma aeronave em fase de projeto conceitual.

Cleber Soares 07 April 2004 (has links)
O presente trabalho tem por objetivo a avaliação das características aeroelásticas referentes a flutter de uma aeronave militar de treinamento em sua fase inicial de projeto. Para a execução da análise ée elaborado um modelo aeroelástico da aeronave, composto de dois modelos distintos: um em elementos finitos representativo das características dinâmicas da aeronave e um modelo aerodinâmico não-estacionário baseado na teoria Doublet Lattice. Correções para ajuste do comportamento aerodinâmico estacionário do modelo são feitas com base em resultados obtidos junto ao grupo de aerodinâmica do Projeto Treinador Avançado. A ocorrência do fenômeno de flutter colocará restrições ao projeto. Os detalhes do modelamento dinâmico e aerodinâmico, bem como ajuste aerodinâmico adotado, são também apresentados. O software utilizado na solução dos problemas dinâmico e aeroelástico ée o MSC.Nastran V.70.7. Um estudo paramétrico ée realizado para analisar o comportamento do modelo aeroelástico após alteração de parâmetros relacionados com as superfícies de controle (canard, aileron, leme e empenagem horizontal). Os resultados são apresentados em forma gráfica através dos gráficos V-g-f que mostram a tendência do comportamento do amortecimento e freqüência de cada modo com a variação da velocidade do escoamento.
19

Estudo numérico de uma asa com controle ativo de flutter por realimentação da pressão medida num ponto / Numeric study of a wing with flutter active control by feedback of the pressure measured in one point

Costa, Tiago Francisco Gomes da 06 July 2007 (has links)
Neste trabalho é desenvolvido um sistema de controle ativo para supressão de flutter de uma asa utilizando-se sensores de pressão em pontos estratégicos de sua superfície. O flutter é um fenômeno aeroelástico que caracteriza um acoplamento instável entre estrutura flexível e escoamento aerodinâmico não estacionário. Quando a modificação da estrutura ou da aerodinâmica da asa não é viável, o uso de sistemas de controle passa a ser uma boa opção. Para o desenvolvimento do sistema de controle proposto, é primeiramente desenvolvido um modelo numérico de asa flexível. Com esse modelo numérico e a pressão na superfície da asa medida em certos pontos e realimentada ao sistema controlador, são determinadas correções no ângulo de uma superfície de controle no bordo de fuga. A tentativa de se utilizar um sistema de controle bem simples, com o uso de um único sensor de pressão, mostra a viabilidade de se implementar um sistema deste tipo em aeronaves reais. Esse sistema pode tornar-se uma alternativa aos desenvolvidos até então com o uso de acelerômetros, além de ser útil em sistemas onde se procura prever o estol e observar o comportamento da distribuição de pressão sobre a asa em vôo. / In this work, a wing flutter suppression active control system using pressure sensors in strategic points is developed. Flutter is an aeroelastic phenomenon characterized by an unstable coupling of a flexible structure and a non-stationary aerodynamic flow. When changes of the wing structure or of the aerodynamics are not viable, the use of automatic control systems becomes a good option. For the developing of the suggested control system, a numeric model of a finite flexible wing is firstly done. With this model and the pressure over the wing surface read in certain points and fedback to the control system, changes of the control surface angle on the trailing edge are determined. The attempt to use a simple control system, with a unique pressure sensor shows the viability of implanting this kind of system in real aircrafts. This system may become an alternative to those developed until now, using accelerometers. Yet, it could be useful, in systems where it is necessary to predict stall and observe the pressure load behavior over the wing in flight.
20

Resposta aeroelástica à rajada 1-cosseno usando aproximação aerodinâmica não estacionária /

Ribeiro, Frederico Albuquerque. January 2019 (has links)
Orientador: Douglas Domingues Bueno / Resumo: Os fenômenos associados aos sistemas aeroelásticos definem uma importante classe de problemas envolvida no projeto de aeronaves. Algumas análises podem ser realizadas utilizando a formulação no domínio da frequência, porém, para alguns problemas específicos a análise no domínio do tempo mostra-se mais conveniente, especialmente para projeto de controladores e inclusão de não linearidades. Em particular, forças aerodinâmicas não estacionárias são tipicamente obtidas no domínio da frequência reduzida. Tais formulações não permitem de maneira direta, através de uma transformada inversa, obter modelos matemáticos no domínio do tempo e, portanto, é necessário o uso de um método de aproximação, como o de Roger-Abel. No entanto, uso deste método de aproximação apresenta algumas lacunas com relação ao significado físico e escolha dos parâmetros de atraso. Desta forma, o presente texto explora a influência dos estados de atraso demonstrando que é responsável pela correção da fase entre o movimento e as forças aerodinâmicas resultantes e, também, propõe uma forma de avaliação da qualidade da aproximação obtida. A partir da aproximação das cargas aerodinâmicas se obtém o modelo matemático do sistema aeroelástico, e através de simulações numéricas computacionais, tem-se a resposta do sistema aeroelástico no domínio do tempo devido à cargas de rajada $1-cosseno$. A partir da análise da resposta à rajada é possível avaliar condições em que a rajada se apresenta de maneira mais crítica para... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The phenomena associated with the aeroelastic systems define an important class of problems involved in aircraft design. Some analyzes may be performed in the frequency domain, however, for some specific problems time domain analysis is more convenient, especially for controller design and the inclusion of nonlinearities. In particular, non-stationary aerodynamic forces are typically obtained in the reduced frequency domain. Such formulations do not allow, by means of an inverse transform, to obtain mathematical models in the time domain, and therefore it is necessary to use an approximation method, such as that of Roger-Abel. However, the use of this approximation method presents some gaps with respect to the physical meaning and choice of lag parameters. In this way, the present text explores the influence of the lag states demonstrating that it is responsible for the correction of the phase between the movement and the resulting aerodynamic forces and also proposes a method to evaluate the quality of the approximation achieved. From the approximation of the aerodynamic loads the mathematical model of the aeroelastic system is obtained, and through computational numerical simulations, has the response of the aeroelastic system in the time domain due to the 1-cosine gust load. From the analysis of the response to the gust, it is possible to evaluate conditions in which the gust is presented in a more critical way for the study system. / Mestre

Page generated in 0.1251 seconds