• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 17
  • Tagged with
  • 111
  • 63
  • 45
  • 38
  • 32
  • 25
  • 23
  • 23
  • 22
  • 22
  • 22
  • 21
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Modelo experimental para ensaios de Flutter de uma seção típica aeroelástica / Experimental model for Flutter tests of a typical aeroelastic section

Eduardo Jesus Tavares 02 October 2009 (has links)
A aeroelasticidade é a ciência que estuda os fenômenos provenientes das interações entre forças aerodinâmicas, elásticas e inerciais. Estes fenômenos podem ser classificados como estáticos ou dinâmicos e estes divididos em problemas de estabilidade ou de resposta. Destaca-se aqui o flutter, um fenômeno aeroelástico dinâmico de estabilidade. A velocidade crítica de flutter é a fronteira entre a estabilidade e instabilidade de um sistema aeroelástico. Em velocidades menores que a crítica qualquer oscilação é amortecida ao longo do tempo. Na velocidade crítica o sistema aeroelástico apresenta oscilações auto excitadas com amplitude e frequência constantes. Acima da velocidade crítica verificam-se oscilações instáveis que resultam na falha de uma estrutura. Este trabalho apresenta o projeto, fabricação e testes de um modelo experimental para testes de flutter em túnel de vento. O modelo experimental é composto por uma asa rígida conectada a uma suspensão elástica que atribui dois graus de liberdade ao experimento. As características inerciais e elásticas do modelo experimental são determinadas e utilizadas em um modelo aeroelástico computacional. Este modelo utiliza as equações de movimento para uma seção típica combinadas com o modelo aerodinâmico não estacionário de Theodorsen. O método V-g é utilizado para a solução do problema de flutter, ou seja, determinação da velocidade crítica de flutter. Esta solução é confrontada com a velocidade crítica medida em ensaios em túnel de vento. A evolução aeroelástica do modelo experimental é medida e apresentada como respostas no domínio do tempo e da frequência. / Aeroelasticity is the science which studies the interaction among inertial, elastic, and aerodynamic forces. Aeroelastic phenomena can be divided in static and dynamic problems and these studied as problems of stability or response. Flutter is a dynamic aeroelastic problem of stability and one of the most representative topics of aeroelasticity. The critical flutter speed can be defined as the frontier between stability and instability. Below the critical speed vibrations are damped out as time proceeds. At the critical flutter speed the system presents a self-sustained oscillatory behavior with constant frequency and amplitude. Unstable oscillations are observed for speeds above the critical one leading to structural failure. The design, fabrication and tests of an experimental model for flutter tests in wind tunnels are presented in this work. The experimental model has a rigid wing connected to a flexible suspension that allows vibrations in two degrees of freedom. The elastic and inertial parameters of the experimental system are used in a computational aeroelastic model. The equations of motion for a typical aeroelastic section and an unsteady aerodynamic model given by Theodorsen are combined and the resulting aeroelastic equations are solved using the V-g method. The computational results are compared with the experimental critical flutter speed measured in wind tunnel tests. The experimental aeroelastic behavior with increasing airflow speed is given in time and frequency domain.
52

Análise do comportamento eletroaeroelástico de uma seção típica para geração piezelétrica de energia / Electroaeroelastic behavior analysis of a typical section for piezoelectric energy harvesting

Vagner Candido de Sousa 13 February 2012 (has links)
A conversão de vibrações aeroelásticas em eletricidade para a geração de pequenas quantidades de potência tem recebido cada vez mais atenção nos últimos anos. Além de aplicações em potencial para estruturas aeroespaciais, o objetivo é desenvolver configurações alternativas para a coleta de energia do escoamento e usá-las em sistemas eletrônicos sem fio. O uso de uma seção típica é uma abordagem conveniente para criar instabilidades e oscilações persistentes na coleta aeroelástica de energia. Este trabalho analisa as versões linear e não linear de dois geradores aeroelásticos de energia baseados em aerofólio que utilizam transdução piezelétrica: (1) com dois graus de liberdade (GDL) e (2) com três GDL. As equações governantes eletroaeroelásticas adimensionais são dadas em cada caso com uma carga resistiva no domínio elétrico para a previsão do comportamento do sistema. Primeiro, a interação entre a geração piezelétrica de potência e os comportamentos aeroelásticos linear e não linear de uma seção típica com 2-GDL é investigada para um conjunto de cargas resistivas. As previsões do modelo são comparadas com dados experimentais obtidos em ensaios em túnel de vento na condição de flutter. No segundo estudo de caso, uma não linearidade bilinear é adicionada ao GDL de rotação da seção típica. Mostra-se que oscilações não lineares em ciclo limite podem ser obtidas abaixo da velocidade linear de flutter. As simulações do modelo previram com sucesso os resultados experimentais. Finalmente, a combinação das não linearidades rigidez cúbica (do tipo que se torna mais rígida proporcionalmente ao cubo do deslocamento) e bilinear é considerada no GDL de rotação da seção típica. A resposta piezoaeroelástica não linear é investigada para diferentes valores da razão entre a rigidez não linear e a rigidez linear. A não linearidade bilinear reduz a velocidade em que oscilações persistentes aparecem enquanto que a rigidez cúbica contribui para com a obtenção de oscilações persistentes de amplitude aceitável em uma faixa mais ampla de velocidades do escoamento. Em seguida, os comportamentos piezoaeroelásticos linear e não linear de uma seção típica com 3-GDL são investigados. A não linearidade bilinear é adicionada ao GDL de rotação da superfície de controle. Mostra-se que oscilações não lineares em ciclo limite podem ser obtidas em uma faixa de velocidades do escoamento. No último caso, a não linearidade cúbica é modelada no GDL de rotação da seção típica (além da não linearidade bilinear na superfície de controle) e oscilações de amplitude limitada são obtidas em uma faixa de velocidades do escoamento. Não linearidades concentradas podem ser introduzidas em geradores aeroelásticos de energia (que utilizam transdução piezelétrica ou outro mecanismo transdutor) para melhoria do desempenho do sistema. / Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. The use of a typical airfoil section is a convenient approach to create instabilities and persistent oscillations in aeroelastic energy harvesting. This work analyzes the linear and non linear versions of two airfoil-based aeroelastic energy harvesters using piezoelectric transduction: (1) with two degrees of freedom (DOF) and (2) with three DOF. The governing dimensionless electroaeroelastic equations are given in each case with a resistive load in the electrical domain for predicting the system behavior. First the interaction between piezoelectric power generation and linear and non linear aeroelastic behavior of a typical section with 2-DOF is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limitcycle oscillations can be obtained below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Later the linear and non linear piezoaeroelastic behavior of a typical section with 3-DOF is investigated. Free play nonlinearity is added to the control surface DOF and it is shown that nonlinear limit-cycle oscillations can be obtained over a range of airflow speeds. In the last case cubic hardening nonlinearity is modeled in the pitch DOF (in addition to the free play in the control surface) and bounded oscillations are obtained for a range of airflow speeds. Concentrated nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.
53

Proposta conceitual de excitador de \"flutter\" alternativo para ensaios em vôo / Conceptual purpose of an alternative flutter exciter for flight testing

Jorge Henrique Bidinotto 19 October 2007 (has links)
Os novos materiais utilizados nas estruturas de aeronaves, mais leves e flexíveis, tornam estas estruturas mais sujeitas a fenômenos aeroelásticos, sendo que o mais sério deles é o flutter, que deve ser cuidadosamente investigado com uma boa campanha de ensaios em vôo durante o desenvolvimento e certificação da aeronave. Este trabalho propõe um projeto conceitual de um excitador de flutter que atenda às necessidades dos ensaios, tentando resolver problemas encontrados nos modelos utilizados comumente. Para isso, é feita uma revisão da literatura pertinente, apresentando conceitos de ensaios em vôo e do fenômeno em questão, além de apresentar um histórico dos ensaios e modelos de excitadores utilizados ao longo da história. Em seguida, são apresentados alguns conceitos de excitadores, que são dimensionados e analisados segundo suas vantagens e desvantagens para finalmente escolher o modelo mais pertinente visando no futuro um projeto detalhado, construção e testes em túnel de vento. / The ultimate materials used in aircraft structures, lighter and more flexibles, make these structures more susceptible to aeroelastic phenomena including flutter, the most dangerous of all. This kind of phenomena must be carefully investigated with satisfactory flight test campaigns during the aircraft development and certification. This work proposes a flutter exciter conceptual design that attends the test necessities, trying to solve problems found in the models used actually. So, a bibliographic revision is done, presenting flight test concepts and the studied phenomena, regarding a flight test history and the exciter models used through the years. Finally, some exciter concepts are presented, dimensioned and analyzed considering their advantages and disadvantages in order to choose the most pertinent model, considering, in a near future, the detailed design, manufacturing and wind tunnel tests.
54

Circuito piezelétrico chaveado para controle de vibrações e coleta de energia em uma seção típica aeroelástica / Piezolectric switching circuit for vibration control and energy harvesting on aeroelastic typical section

Douglas D\'Assunção 14 June 2013 (has links)
Os materiais inteligentes têm sido utilizados em problemas de controle de vibrações e conversão de energia mecânica em energia elétrica. Apesar das diferentes opções existentes, os piezelétricos têm recebido grande atenção devido a facilidade de instalação, além de possibilidade de uso como sensores ou atuadores. Em termos de sistemas de controle utilizando materiais piezelétricos, dois grandes grupos podem ser encontrados: os controladores passivos e os ativos. Os controladores ativos utilizam o efeito piezelétrico inverso e apresentam bom desempenho na redução de vibrações. Entretanto, apresentam desvantagens relacionadas à complexidades de uma lei de controle, necessidade de equipamentos externos e, potencialmente, exigem elevada potência de atuação. Por outro lado, os controladores passivos utilizam circuitos elétricos simples, compostos somente por elementos elétricos passivos. Apesar de serem de fácil implementação prática, apresentam bom desempenho em faixas restritas de frequências. Os controladores semi-passivos, surgiram como uma alternativa aos pontos negativos dos controladores passivos e ativos. Nestes novos sistemas, o material piezelétrico instalado na estrutura a ser controlada é conectado e desconectado a um circuito shunt de forma sincronizada com as vibrações mecânicas. Em geral, a conversão eletromecânica de energia é amplificada, assim como o efeito shunt damping. Dessa forma, os circuitos chaveados têm sido utilizados tanto como controladores semi-passivos quanto em problemas de coleta piezelétrica de energia. Neste trabalho, o controle piezelétrico semi-passivo de oscilações aeroelásticas lineares e não lineares, assim como a coleta piezelétrica de energia a partir das mesmas condições, são investigados experimentalmente. Uma seção típica com dois graus de liberdade e acoplamento eletromecânico é utilizada nos experimentos. Dois tratamentos não lineares do sinal elétrico proveniente dos piezelétricos são utilizados. Primeiro, o chaveamento a partir da condição de circuito aberto para uma resistência muito baixa, próxima ao curto circuito, e posteriormente, o chaveamento da condição de circuito aberto para um indutor. Um circuito chaveador autônomo (que não depende de fontes externas de energia) é apresentado. O desempenho dos dois sistemas no controle de flutter, e também de oscilações em ciclo limite, são discutidos. Os resultados mostraram um aumento na velocidade de flutter de até 8,8% e 11,5%, com chaveamento em uma resistência e em um indutor, respectivamente. No caso de coleta de energia a partir de oscilações aeroelásticas lineares e não lineares, o desempenho dos circuitos chaveados são comparados entre si, e com o caso em que uma resistência é considerada no domínio elétrico, resultando em um aumento da potência elétrica de até 101%, para chaveamentos em resistência, e 227%, para chaveamentos em um indutor. / Smart materials have been used in vibration control and also in energy harvesting problems. Although different materials are available, piezoelectric one has received most attention due to ease of installation and possibility of use as sensors or actuators. In general, there are two large categories of vibration control techniques using piezoelectric materials: passive and active control. In active control the reverse piezoelectric effect is used. In general, they present good performance in vibration reduction over a range of frequencies. However, active control has the disadvantages of additional complexities of a control law, additional hardware and the potentially large amount of power required. On the other hand, piezoelectric passive controllers use simple electric circuits composed by passive electrical elements. Although they are simple to implement, the performance of the controlled system is sensitive to the exciting frequency. The semi-passive controllers are a recent alternative to the drawbacks of passive and active controllers. In semi-passive systems, the piezoelectric element is switched in and out of a shunt impedance, in a synchronous way with mechanical vibrations. In general, the electromechanical energy conversion is enhanced as well as the shunt effect damping. Therefore, the switching techniques have been used both in semi-passive control problems and in piezoelectric energy harvesting problems. In this work, semi-passive techniques are experimentally investigated in aeroelastic control and piezoaeroelastic energy harvesting cases. An electromechanically coupled aeroelastic typical section is used in the experiments. Two techniques are investigated, the synchronized switching damping on short and the synchronized switching damping on inductor. An autonomous switching circuit (that does not requires external source of energy) is presented resulting in a self-powered flutter controller. The performance of the two semi-passive techniques is discussed for the linear case, flutter control, as well as limit cycle oscillations control. The linear flutter speed is increased by 8.8% and 11.5% when the SSDS and SSDI techniques are used, respectively. In the case of energy harvesting from linear and nonlinear aeroelastic oscillations, the performance of switching techniques is investigated and compared to the case of simple load resistance in the electrical domain. The power output is increased by 101% for the SSDS case and 227% for SSDI case.
55

Desenvolvimento de uma balança dinâmica de três graus de liberdade para estudo dos efeitos de flexo-torção em edifícios altos submetidos à ação do vento / The development of a three degree of freedom dynamic balance for the study of the wind induced bending and torsional effects in tall buildings

Oliveira, Mário Gustavo Klaus January 2009 (has links)
Medições realizadas em edifícios altos, em escala real, têm mostrado que o carregamento devido à ação do vento pode causar importantes efeitos de torção. A atual tendência de construção de prédios com formas e sistemas estruturais mais complexos promove a acentuação das excentricidades entre o centro de massa, centro elástico e o ponto de aplicação instantânea de forças aerodinâmicas. Soma-se a isso o fato de os edifícios altos modernos estarem se tornando cada vez mais esbeltos e leves, o que baixa a velocidade (do vento) de disparo de fenômenos como galope e drapejamento torcional, fazendo com que esta velocidade se aproxime cada vez mais das velocidades do vento consideradas nos projetos. Frente a isso, os efeitos dinâmicos, tanto de flexão como de torção, induzidos pelo vento em edifícios altos representam uma importante consideração nos projetos de estruturas modernas. Os métodos analíticos para determinação da resposta de edifícios altos submetidos à ação do vento, hoje disponíveis, não levam a resultados satisfatórios em casos de geometrias não regulares, bem como não contemplam efeitos torsionais. Seu uso também não é recomendado no caso de estruturas muito flexíveis, cujo movimento afeta as forças aerodinâmicas que nelas atuam. Nessas situações, a melhor opção para os engenheiros é um estudo mais detalhado dos efeitos do vento sobre a estrutura, através de ensaios de modelos em escala reduzida em túneis de vento, que simulem as características do vento natural. O objetivo deste trabalho é o desenvolvimento de um mecanismo que permita a obtenção da resposta de edifícios altos frente à ação do vento, a partir de ensaios em túnel de vento com modelos em escala reduzida. Busca-se determinar a resposta em termos de suas componentes médias e flutuantes. Admite-se que a parcela dinâmica contempla os dois modos fundamentais de vibração livre em flexão, ortogonais entre si e aproximados de forma linear, e o primeiro modo de torção, aproximado de forma constante. As simplificações adotadas permitem que os modelos tenham baixa complexidade de projeto e construção, diminuindo, assim, o custo da modelagem e tornando o processo experimental mais ágil. Para validar os resultados obtidos com a utilização do mecanismo desenvolvido foram realizados ensaios em escala reduzida do CAARC Standard Tall Building, edifício alto tomado como padrão para calibração de técnicas de modelagem aeroelástica, no Túnel de Vento Professor Joaquim Blessmann, da Universidade Federal do Rio Grande do Sul. Os resultados obtidos foram comparados com os valores publicados por outros pesquisadores e com resultados determinados a partir de ensaios de medidas de pressões em alta freqüência. A coerência entre os valores comparados permitiu concluir que o equipamento simula satisfatoriamente o comportamento dinâmico de edifícios altos submetidos à ação do vento, mesmo perante fenômenos aeroelásticos, como a ressonância por desprendimento alternado de vórtices. A partir dos resultados verificou-se também a importância dos efeitos dinâmicos de torção induzidos pela ação do vento, e a necessidade de que sejam apropriadamente considerados nos projetos / Measurements performed in full-scale high rise buildings have shown that wind loading may cause important torsional effects. The current trend of building construction, with new shapes and complex structural systems promotes an increase in the distances (eccentricities) among the center of mass, elastic center and the instantaneous point of application of the resulting wind loads. Furthermore, modern tall buildings are becoming increasingly light and slender, diminishing the trigger wind speed of some phenomena such as galloping and torsional flutter, bringing these velocities closer to the design wind speeds. Therefore, wind induced bending and torsional dynamic effects in tall buildings play an important role in the design of modern structures. The current analytical methods for the response determination of tall buildings under wind loading do not lead to reliable results for the non regular building shapes, as well as do not consider torsional effects. Also, its use is not recommended for the case of very flexible structures, where the structure´s own motion may affect the aerodynamic forces acting on it. In these situations, the best option for engineers is a more detailed study of the wind effects, through boundary layer wind tunnels. The aim of this study is the development of a device that allows the determination of the response of tall buildings under wind loading, through wind tunnel tests with reduced scale models. The goal is the determination of the responses in terms of its mean and fluctuating components. It is assumed that the dynamic parcel contemplates the two fundamental bending modes of vibration, orthogonal and linear, as well as the torsional mode, which is assumed constant along the height. The adopted simplifications allow for a low complexity in the process of model design and construction as well as for a very low modeling cost, making more efficient the whole testing process. To validate the device, tests were performed with a reduced scale model of the CAARC Standard Tall Building, which is taken as a standard for the calibration of aeroelastic modeling techniques, in Prof. Joaquim Blessmann boundary layer wind tunnel of the Federal University of Rio Grande do Sul. The obtained results were compared with other researchers' values as well as with results obtained from pressure measurements, in a rigid model. The agreement among the compared values allows the conclusion that the device simulates satisfactorily well the dynamic behaviour of high rise buildings under wind loading, even for aeroelastic phenomena such as the resonance due to vortex shedding. It was also verified the importance of the wind induced torsional effects and the need for its proper consideration in the design process.
56

Uma metodologia para análise de comportamento estrutural de componentes de aerogeradores

ASIBOR, Aigbokhan Isaiah 29 January 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2016-09-12T18:09:24Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) UMA METODOLOGIA PARA ANÁLISE DE COMPORTAMENTO ESTRUTURAL DE COMPONENTES DE AEROGERADORES.pdf: 2234628 bytes, checksum: c801a59ec85918d199458eb62c41c451 (MD5) / Made available in DSpace on 2016-09-12T18:09:25Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) UMA METODOLOGIA PARA ANÁLISE DE COMPORTAMENTO ESTRUTURAL DE COMPONENTES DE AEROGERADORES.pdf: 2234628 bytes, checksum: c801a59ec85918d199458eb62c41c451 (MD5) Previous issue date: 2016-01-29 / Simulações computacionais do comportamento dinâmico dos modernos aerogeradores constituem-se em informação técnica estratégica muito empregada e, cada vez mais valorizada, nas etapas de projeto e certificação de uma nova máquina para o cada vez mais concorrido mercado global de energia eólica. Essas simulações são realizadas com o emprego de complexos sistemas computacionais que demandam do usuário expertise em vários campos de conhecimento técnico das engenharias. Este trabalho objetiva apresentar e testar uma metodologia para investigar o comportamento estrutural de componentes de aerogeradores. O estudo de caso é desenvolvido com um aerogerador modelo do tipo Velocidade Varável Pitch Variável de 2 MW disponível em um código aeroelástico, GL Bladed que será utilizado nas simulações dinâmicas dos principais estados operacionais (operação normal, partida, parada normal, parada de emergência) e não operacionais (estado ocioso, estado estacionário) do aerogerador para obter as forças e momentos tridimensionais que serão transmitidas para toda a estrutura do aerogerador. Uma ferramenta de CAD (Solidworks) é utilizada para representar em 3D o modelo do aerogerador completo, considerando-se duas situações para a sua estrutura de sustentação: torre de aço e torre de concreto armado. Em seguida, os modelos geométricos são exportados para uma ferramenta de elementos finitos (COMSOL Multiphysics) visando realizar simulações numéricas da resposta estrutural dos modelos através de verificação das tensões e deslocamentos produzidos. A ferramenta de elementos finitos é alimentada pelos cenários mais críticos identificados, dentre os elencados pela IEC 61400-1. Ao se comparar os resultados obtidos pela solução do modelo de elementos finitos para todas as condições simuladas, verificou-se que nenhum dos valores de tensões máximas de Von-Mises sofridas pelas torres de aço e de concreto atingiu o valor das suas respectivas tensões de cálculo. Este resultado evidencia que tanto o modelo da torre de aço quanto ao de concreto resistiriam aos piores cenários de forças e momentos tridimensionais. Observaram-se concentrações de tensões nas regiões de descontinuidade geométricas da estrutura das torres. Por outro lado, os deslocamentos máximos obtidos para as torres foram analisados para verificar o aspecto da flexibilidade da estrutura de sustentação. Por fim, analisou-se o comportamento estrutural dos modelos das torres de aço e de concreto armado em regime estacionário, sob a ação da velocidade básica do vento (velocidade extrema) da região de interesse. Este estudo de caso demonstrou a aplicabilidade da metodologia proposta para análise do comportamento estrutural de componentes de aerogeradores. Sugere-se a aplicação da mesma para outros componentes da máquina visando demonstrar a robustez do método proposto. / Computational simulations of the dynamic behavior of modern wind turbines provide technical strategic information very much employed and, increasingly valued during the design stages and certification of a new wind turbine for the increasingly competitive global wind energy market. These simulations are performed with the use of complex computational systems that require user experience in several technical expertise fields of engineering. This work seeks to present and test a methodology in order to investigate the structural behavior of wind turbine components. The case study is performed with a 2 MW Variable Speed Variable Pitch (VSVP) wind turbine model available in an aeroelastic code, GL Bladed where dynamic simulations of the main operational (normal operation, start-up, normal stop, emergency stop) and non-operational (idling and parked state) states of the wind turbine are performed in order to obtain the tridimensional forces and moments transmitted to the whole turbine structure. A CAD tool (Solidworks) is employed to represent the complete wind turbine model in 3D, considering two situations for the support system: steel tower and reinforced concrete tower. The geometric models are exported to a finite element tool (COMSOL Multiphysics) with the aim of simulating numerically their structural behavior by observing the stresses and displacement produced. The finite element tool is fed with the most critical scenarios identified, among others given by IEC 61400-1. When the results of the solution given by the finite element model for all the simulated conditions were compared, it was observed that the maximum von Mises stresses produced in each of the towers did not reach the respective calculated stress value. This result proves that both concrete and steel towers resisted the worst scenarios of tridimensional forces and moments. Stress concentrations were identified in the discontinuity regions of the tower structures. On the other hand, the maximum displacements produced on the towers were analyzed with the aim of verifying the flexibility aspect of the support structure. Finally, the influence of extreme wind on the structural models of the steel and reinforced concrete tower model were analyzed under the rotor parked mode at the region of interest. The case study demonstrated the applicability of the proposed methodology for analyzing the integrity of wind turbine components. It is recommended that this methodology is applied for other wind turbine components in order to demonstrate the robustness of the proposed method.
57

Identificação modal de uma estrutura aeronáutica via algoritmo de realização de sistemas / Modal identification of an aeronautical structure via the eigensystem realization algorithm

Valdinei Sczibor 27 September 2002 (has links)
A determinação de características dinâmicas de estruturas aeronáuticas é um assunto extremamente importante na indústria aeroespacial, principalmente devido à demanda contínua para estruturas mais leves e conseqüentemente mais flexíveis. Neste contexto, estruturas aeroespaciais precisam ser submetidas a alguma forma de verificação modal antes do vôo, para assegurar que a aeronave é livre de fenômenos aeroelásticos indesejáveis. Esta análise freqüentemente inclui a identificação experimental de características dinâmicas como freqüência natural, fatores de amortecimento e forma dos modos usando ensaio modal. Neste trabalho foi realizado um ensaio de vibração no solo em uma asa metálica da aeronave Neiva Regente para obtenção das funções resposta em freqüência da estrutura. O método de identificação utilizado para este estudo é o Algoritmo de Realização de Sistemas – ERA. É um método de identificação considerado eficiente e poderoso, pois é capaz de identificar estruturas que apresentem comportamento dinâmico complexo. O algoritmo foi validado através de uma simulação de um modelo hipotético e de dados experimentais de uma viga de alumínio. Os resultados experimentais, porém, apresentam modos computacionais que devem ser eliminados. Para tanto foram utilizados três índices de confiança para qualificar os resultados, sendo estes: Colinearidade de Fase Modal Ponderada (MPCW), Coerência da Amplitude Modal Estendida (EMAC) e Indicador de Consistência Modal (CMI). Os modos que apresentaram melhores índices de confiança são considerados o resultado final do processo de identificação. Desta forma, o processo de identificação foi aplicado para a semi-asa da aeronave Neiva Regente. A identificação revelou-se mais difícil, basicamente devido à complexidade da estrutura somado-se a problemas de ruído, o que levou a um número pequeno de modos identificados / The determination of the dynamic characteristics of aircraft structures has become an extremely important issue in the aerospace industry, primarily due to the continuous demand for lighter and consequently more flexible structures. In this context, most aerospace structural system must be subjected to some form of modal verification prior to flight in order to ensure that the aircraft is free from any dangerous aeroelastic instability phenomena. The verification procedure often includes the experimental identification of structural characteristics such as the natural frequency, damping factors and normal modes using modal testing. In this work, a ground vibration testing (GVT) of a metallic wing of the Neiva Regente aircraft was accomplished in order to assess the frequency response functions. The basic identification method used for this study is the Eigensystem Realization Algorithm – ERA. It is an identification method, which is considered efficient and powerful, because it is capable to identify structures that present complex dynamic behaviour. The algorithm was valited through data obtained from a simulation of a hypothetical model and dynamic measurement accomplished in an aluminium beam. The experimental results, nevertheless, present computacional modes that must be removed from the model. Three confidence factors were used to qualify the results, namely the Modal Phase Collinearity – Weighted (MPCW), Extended Modal Amplitude Coherence (EMAC) and Consistent-Mode Indicator (CMI). The modes that presented higher confidence factor values were considered as the final result of the identification process. Then, the identificatin process was applied to a semi-wing of the Neiva Regente aircraft. This case has revealed a much harder identification procedure, where the complexity of the structure plus noisy data have led to a small number of identified modes
58

Modelagem e análise de uma asa piezoaeroelástica para geração de energia / Modeling and analysis of a piezoaeroelastic wing for power generation

Marcos José Maria 17 December 2010 (has links)
A redução do consumo de energia dos sistemas eletrônicos, fez com que a pesquisa de novas fontes de energia para alimentar estes dispositivos tivesse enorme importância na última década. Algumas destas fontes são provenientes da conversão de energia de vibrações mecânicas em energia elétrica. Veículos aéreos não tripulados (UAVs) e micro veículos aéreos (MAVs) constituem uma aplicação importante para utilização de geradores de energia baseados em vibrações. Este trabalho tem seu foco na conversão de oscilações aeroelásticas em eletricidade utilizando o efeito piezelétrico direto. Um modelo numérico piezoaeroelasticamente acoplado, proveniente da associação de um modelo por elementos finitos eletromecânico e um modelo aerodinâmico não estacionário é apresentado. Uma asa geradora de energia composta por uma subestrutura metálica e piezocerâmicas embutidas é modelada. Apresentam-se como resultados, saídas elétricas (tensão, corrente e potência elétrica) e mecânicas no domínio do tempo. Uma carga resistiva é assumida no domínio elétrico do problema. Uma rajada discreta do tipo \'1-cos\' é assumida para várias velocidades do escoamento e valores de resistências elétricas, utilizando eletrodos contínuos e segmentados. Aponta que os melhores resultados foram obtidos com a utilização de eletrodos segmentados e que em razão do melhor acoplamento eletromecânico, obtêm-se um maior efeito shunt damping, um aumento na velocidade de flutter (1 m/s neste trabalho) e uma maior geração de potência. / Reducing the power consumption of electronic systems, has led the research for new sources of energy to power these devices have great importance in the last decade. Some of these sources are from the conversion of energy from mechanical vibrations into electrical energy. Unmanned Aerial Vehicles (UAVs) and Micro Air Vehicles (MAVs) are an important application for use of vibration energy harvesting. This work focuses on conversion of aeroelastic oscillations into electricity using piezoelectric direct effect. A numerical model coupled piezoaeroelastically derived from the combination of an electro-mechanical finite element model and an unsteady aerodynamic model is presented. A power generator wing consists of a metal substructure and embedded piezoceramic is modeled. They appear as results, electrical outputs (voltage, current and electric power) and mechanical time domain. A resistive load is assumed in the electric domain of the problem. A discrete gust of shape \'1-cos\' is taken for various flow velocities and values of electrical resistances, using continuous and segmented electrodes. Indicates that the best results were obtained with the use of segmented electrodes and because of better electromechanical coupling, we obtain a higher shunt damping effect, an increase flutter speed (1 m/s in this work) and greater power generation.
59

Estudo da coleta de energia a partir de oscilações não lineares induzidas por escoamento em uma asa finita / Energy harvesting study of nonlinear oscillation induced by the flow in a finite wing

Vieira, Wander Gustavo Rocha 10 April 2013 (has links)
A conversão de vibração em energia elétrica tem sido investigada por diversos grupos de pesquisa na última década. A principal motivação é a prospecção de fontes alternativas de energia elétrica para sistemas eletroeletrônicos remotamente operados e com fontes limitadas de energia. Diferentes mecanismos de transdução são investigados na literatura para a coleta de energia, entretanto, o piezelétrico tem se destacado devido à densidade de energia que proporciona e também facilidade de uso. Uma alternativa promissora que começa a ser estudada por alguns grupos de pesquisas é a conversão de energia de oscilações aeroelásticas em energia elétrica. Apesar da natureza destrutiva da maioria dos fenômenos aeroelásticos, eles apresentam um grande potencial para o estudo de novos mecanismos e sistemas para coleta de energia. A conversão piezelétrica de energia a partir de oscilações aeroelásticas lineares tem sido investigada. Entretanto, a geração piezoaeroelástica de energia pode se tornar mais atrativa e prática se realizada a partir sistemas aeroelásticos não lineares. A conversão se daria a partir de oscilações persistentes e com amplitude limitada (oscilações em ciclo limite – LCO) ocorrendo em um amplo intervalo de velocidades de escoamento. Define-se o objetivo deste projeto como a investigação numérica da conversão piezelétrica de energia a partir de oscilações aeroelásticas não lineares. Um modelo por elementos finitos para placa plana com piezocerâmicas é desenvolvido, respeitando-se as hipóteses de uma placa de von Kàrmàn. O carregamento aerodinâmico não estacionário é determinado a partir do método de malha de dipolos e uma aproximação do domínio do tempo obtida a partir da formulação apresentada por Roger. Os resultados eletroaeroelásticos são apresentados para asas com diferentes razões de aspecto investigadas em uma ampla faixa de velocidades e considerando-se diversos valores de resistores no domínio elétrico. / The converting of vibration into usable electrical energy has been investigated by several researches groups in the last decade. The main motivation is the possibility of obtaining alternatives electrical energy sources to power electronic system remotely operated and with limited energy sources. Different transduction mechanism has been presented in the energy harvesting literature. However the piezoelectric has been gained more attention because not only of its power density but also its ease of use. A promissory alternative that is becoming studied is the converting of aeroelastic oscillation into electrical energy. Despite of the destructive nature of unstable aeroelastic phenomena (such as, flutter), they present a great potential to the study of innovative mechanism to harvest energy. Although the piezoelectric energy conversion using linear aeroelastic has been investigated in the literature, the use of non linear aeroelastic system can be more practical and attractive. The non linear aeorelastic harvesting occurs by persistent oscillation and with limited amplitudes (Limited Cycle Oscillation – LCO) and can be performed by considerable velocity interval greater than the linear flutter speed. The objective of this work is to investigate the energy harvesting by non linear aeroelastic oscillation. A finite element model of a thin plate (with piezoceramics) is developed), using the non linear hypothesis of von Karman. The unstable aerodynamic loading is obtained by a doublet-lattice method (DLM) and with its time domain conversion using the Roger approximation. The eletroaeroelastic results are presented for several wings with different aspect ratios, and with different resistance values in the electrical domain. The eletroaeroelastic results of the generator wing are investigated for several airspeed greater than its linear flutter speed.
60

Modelagem e análise de geradores aeroelásticos híbridos piezelétrico-indutivos para conversão de energia do escoamento em eletricidade / Modeling and analysis of hybrid piezoelectric-inductive generators for converting flow energy into electricity

Dias, José Augusto de Carvalho 14 March 2014 (has links)
A exploração de fenômenos aeroelásticos dinâmicos visando à conversão de energia do escoamento em eletricidade tem recebido crescente atenção nos últimos anos. As aplicações se estendem desde estruturas aeroespaciais até a alimentação de sistemas eletrônicos sem fio e diferentes mecanismos de transdução têm sido utilizados. O uso de um aerofólio é uma abordagem conveniente e escalável para criar instabilidades e oscilações persistentes para coleta aeroelástica de energia. Este trabalho tem por objetivo avaliar configurações alternativas de aerofólio para a coleta de energia do escoamento. As análises abrangem as versões lineares e não lineares de geradores aeroelásticos de energia baseados em aerofólio com dois (2GDL) e com três graus de liberdade (3GDL) que utilizam transdução piezelétrica e eletromagnética separadamente e também simultaneamente. Em todos os casos o acoplamento eletroaeroelástico é adicionado ao grau de liberdade de flexão do aerofólio e um circuito elétrico externo utilizado para cada tipo de mecanismo de transdução. As equações adimensionais que governam o sistema eletroaeroelástico são apresentadas para cada caso e uma carga resistiva é considerada no domínio elétrico para a previsão da potência gerada. Inicialmente, as previsões do modelo piezoaeroelástico linear com 2GDL são verificadas a partir de resultados experimentais obtidos em ensaios em túnel de vento na condição de flutter. Posteriormente, no primeiro estudo de caso, o comportamento eletroaeroelástico da seção típica com 2GDL é investigado, na velocidade de flutter, variando-se parâmetros aeroelásticos e eletromecânicos. No segundo estudo de caso, uma não linearidade do tipo freeplay é adicionada ao grau de liberdade de rotação da seção típica de 2GDL. Neste caso, a seção típica é estudada na velocidade mais baixa na qual o sistema apresenta oscilações em ciclo limite para diversas configurações de parâmetros aeroelásticos e eletromecânicos. As oscilações não lineares em ciclo limite podem ser obtidas abaixo da velocidade linear de flutter. Finalmente, o comportamento eletroaeroelástico de uma seção típica linear com 3GDL é estudado segundo a variação de diferentes parâmetros. Em todos os estudos de caso, a potência gerada e a amplitude dos GDLs mecânicos são investigadas. Com o estudo, é possível localizar regiões ótimas de parâmetros adimensionais as quais propiciam um aumento da potência elétrica de saída com velocidades de escoamento aceitáveis. Uma vez escalável, é possível redimensionalizar o modelo e manufaturá-lo. / The exploration of dynamic aeroelastic phenomena for converting wind energy into low-power electricity has received growing attention in the last years. Applications extend from aerospace structures to wireless electronic systems. The use of an airfoil is a convenient approach to create instabilities and persistent oscillations for flow energy harvesting. In this work, the goal is to establish alternative configurations of the airfoil for flow energy harvesting. The analysis presented here covers linear and nonlinear versions of aeroelastic energy generators based on an airfoil with two degrees of freedom and three degrees of freedom using piezoelectric and electromagnetic transduction separately and simultaneously. Both forms of coupling are added to the plunge degree of freedom in the presence of a separate electrical load for each type of transduction. The governing coupled dimensionless electroaeroelastic equations are given with a resistive load in each electrical domain to predict system behavior. First, the model predictions are compared with experimental data obtained in wind tunnel tests under flutter condition validating the model for the case of two degrees of freedom and piezoelectric coupling. After, in the first case study the typical section with two and three degrees of freedom is studied at the linear flutter speed for several aeroelastic and electromechanical parameters configurations. In the second case of study a freeplay non-linearity is added to the rotational degree of freedom of the two degree of freedom typical section. In this case, the typical section is studied at the lowest flow speed at which the system presents limit cycle oscillations for different aeroelastic and electromechanical system parameters. The non-linear limit cycle oscillations may be obtained below the linear flutter speed. In both cases, the power generation is analyzed as well as the maximum displacements of the mechanical degrees of freedom. With this study, it is possible to locate the favorable dimensionless parameter regions that give maximum electrical power output as well as reasonable airflow speeds. In this scalable problem, the results can be used for design and fabrication of optimal airfoil-based flow energy harvesters.

Page generated in 0.0824 seconds