• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DETERMINING THE DYNAMIC SCALES OF THE BOUNDARY LAYER AND FLOW SEPARATION INCEPTION: ANALYSIS TOWARDS EFFICIENT FLOW CONTROL

Jorge Saavedra Garcia (5930216) 17 January 2019 (has links)
<div>The dynamic performance of the momentum and thermal boundary layer linked to the acoustic response dictate the efficiency of heat exchangers and the operational limits of fluid machinery. The specific time required by the boundary layer to establish or adapt to the free stream variations is vital to optimize flow control strategies as well as the thermal management of fluid systems. The proper understanding of the wall fluxes, separated flow regions and free stream response to transient conditions becomes the fulcrum of the further improvement of fluid machinery performance and endurance. Throughout this dissertation the establishment sequence and the main parameters dictating the acoustic response and the boundary layer settlement are quantified together with their implication on the wall fluxes and boundary layer detachment. </div><div><br></div><div>Unsteady Reynolds Average Navier Stokes evaluations, Large Eddy Simulations, Direct Numerical Simulations and wind tunnel experiments are exploited to analyze the transient behavior of attached and detached flow aerodynamics. The core of the research is built upon URANS simulations allowing the realization of multiple detailed parametric analyses. Thanks to its reduced computational cost, hundreds of transient flow evaluations are carried out, enabling the determination of the establishment sequence, the main flow features and relevant non-dimensional numbers. The URANS methodology is verified against experimental and analytic results on the flow conditions of the study. The Large Eddy Simulations and Direct Numerical Simulations allow further characterization of the near wall flow region behavior with much higher resolution while providing an additional source of verification for the coarser numerical tools. An experimental campaign on a novel full visual access linear wind tunnel explores the impact of mean flow sudden accelerations on the boundary layer detachment and reattachment phenomena over an ad-hoc wall mounted hump. The wind tunnel is designed based on the premises of: full visual access, spatial and temporal stability of total and static pressure together with the total temperature and fast flow settlement, minimizing the start-up phase duration of the wind tunnel. A wall mounted hump that mimics the behavior of the aft portion of a low pressure turbine is inserted in the wind tunnel guaranteeing a 2D flow separation phenomena. After steady state test article characterization series of sudden flow discharge experiments reveal the impact of mean flow transients on the boundary layer detachment inception. Finally, taking advantage of the knowledge on transient flow performance, optimum flow control mechanisms to abate boundary layer detachment are proposed. The recommended control approach effectively prevents the boundary layer separation while minimizing the energy requirement.</div>
2

Characterization of a Transitional Hypersonic Boundary Layer in Wind Tunnel and Flight Conditions

Tirtey, Sandy C 15 January 2009 (has links)
Laminar turbulent transition is known for a long time as a critical phenomenon influencing the thermal load encountered by hypersonic vehicle during their planetary re-entry trajectory. Despite the efforts made by several research laboratories all over the world, the prediction of transition remains inaccurate, leading to oversized thermal protection system and dramatic limitations of hypersonic vehicles performances. One of the reasons explaining the difficulties encountered in predicting transition is the wide variety of parameters playing a role in the phenomenon. Among these parameters, surface roughness is known to play a major role and has been investigated in the present thesis. A wide bibliographic review describing the main parameters affecting transition and their coupling is proposed. The most popular roughness-induced transition predictions correlations are presented, insisting on the lack of physics included in these methods and the difficulties encountered in performing ground hypersonic transition experiments representative of real flight characteristics. This bibliographic review shows the importance of a better understanding of the physical phenomenon and of a wider experimental database, including real flight data, for the development of accurate prediction methods. Based on the above conclusions, a hypersonic experimental test campaign is realized for the characterization of the flow field structure in the vicinity and in the wake of 3D roughness elements. This fundamental flat plate study is associated with numerical simulations for supporting the interpretation of experimental results and thus a better understanding of transition physics. Finally, a model is proposed in agreement with the wind tunnel observations and the bibliographic survey. The second principal axis of the present study is the development of a hypersonic in-flight roughness-induced transition experiment in the frame of the European EXPERT program. These flight data, together with various wind tunnel measurements are very important for the development of a wide experimental database supporting the elaboration of future transition prediction methods.
3

Development Of A High-fidelity Transient Aerothermal Model For A Helicopter Turboshaft Engine For Inlet Distortion And Engine Deterioration Simulations

Novikov, Yaroslav 01 June 2012 (has links) (PDF)
Presented in this thesis is the development of a high-fidelity aerothermal model for GE T700 turboshaft engine. The model was constructed using thermodynamic relations governing change of flow properties across engine components, and by applying real component maps for the compressor and turbines as well as empirical relations for specific heats. Included in the model were bleed flows, turbine cooling and heat sink effects. Transient dynamics were modeled using inter-component volumes method in which mass imbalance between two engine components was used to calculate the inter-component pressure. This method allowed fast, high-accuracy and iteration-free calculation of engine states. Developed simulation model was successfully validated against previously published simulation results, and was applied in the simulation of inlet distortion and engine deterioration. Former included simulation of steady state and transient hot gas ingestion as well as transient decrease in the inlet total pressure. Engine deterioration simulations were performed for four different cases of component deterioration with parameters defining engine degradation taken from the literature. Real time capability of the model was achieved by applying time scaling of plenum volumes which allowed for larger simulation time steps at very little cost of numerical accuracy. Finally, T700 model was used to develop a generic model by replacing empirical relations for specific heats with temperature and FAR dependent curve fits, and scaling T700 turbine maps. Developed generic aerothermal model was applied to simulate steady state performance of the Lycoming T53 turboshaft engine.
4

EFFECT OF ANGLE OF ATTACK ON INSTABILITY AND TRANSITION ON A FINITE-SPAN COMPRESSION RAMP IN QUIET HYPERSONIC FLOW

Adelbert Ayars Francis III (16648539) 26 July 2023 (has links)
<p>This research focuses on experiments on compression-induced shock wave/boundary-layer interactions conducted in the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) at Purdue University. The BAM6QT facilitates a low-freestream-noise hypersonic test environment more similar to that experienced in flight than a conventional wind tunnel. Measurements were captured on two sliced 7° half-angle cones with finite-span compression ramps. On the first, the slice was cut parallel to the axis of the cone to build upon previous measurements in hypersonic flow. While similar geometries have been analyzed for over 30 years in experiment and computation, there are significant gaps in understanding of the underlying mechanisms leading to instability and transition on the ramp. Further, in low-noise Mach 6 flow, the boundary layer separated at the leading edge of the slice, which is unlikely to occur on a real flight vehicle. Thus, on the second model, the slice was cut at a 4° incline to the</p> <p>cone axis to facilitate the growth of an attached laminar boundary layer on the slice. Using this configuration, the ramp-induced boundary-layer thickening initiated between the slice leading edge and the ramp leading edge, allowing the investigation of a ‘naturally’ formed separated region. </p> <p><br></p> <p>Data were captured at angles of attack ranging from 0° to 6°, on compression ramp angles ranging from 10° to 20°, and for freestream Reynolds numbers of 2.5×10^6/m to 12×10^6/m. To analyze the mean-flow behavior of the separation bubble as it changes with the above parametrics, time-averaged schlieren visualization was used to provide off-surface visualization of the flowfield, allowing estimates of reattachment position and separation bubble size. In all cases, reattachment position was shown to move upstream with an increase in angle of attack, an increase in ramp angle, and an increase in Reynolds number. However, on the model with the inclined slice, the Reynolds number impacted reattachment location to a much lesser extent. </p> <p><br></p> <p>Heat transfer measurements on the ramp revealed regions with the most significant aerothermal loading. Streamwise streaks of high heating originating at the ramp edges and centerline were observed to increase in magnitude with an increase in Reynolds number, angle of attack, and ramp angle. On the model with the inclined slice, many streaks of high heating were observed that increased in quantity and magnitude with angle of attack and ramp angle. Root mean squared pressure fluctuations computed from surface pressure measurements were shown to follow similar trends to centerline heat transfer results for both models. Angle of attack, ramp angle, and slice angle are shown to play a dominant role in transition. Finally, the importance of quiet tunnels is made remarkably clear, as the BAM6QT operating in its conventional-noise configuration resulted in drastically different results.</p> <p><br></p> <p>For measurement of shock wave/boundary-layer instabilities, schlieren frames were captured at 100,000 fps to allow measurement of low-to-mid-frequency fluctuations of the recirculation zone edge. Shear layer flapping frequencies were found to occur at around 1100–1200 Hz, which increased with angle of attack to up to 1600 Hz. It is likely that this is an inherent instability in the separation bubble itself, rather than a function of freestream disturbances, and may be indicative of an ‘expansion and relaxation’ effect known as bubble breathing. Additional measurements using low-frequency-capable pressure sensors must be captured to determine whether this breathing effect manifests on the model slice or ramp. </p>
5

CBAS: A Multi-Fidelity Surrogate Modeling Tool For Rapid Aerothermodynamic Analysis

Tyler Scott Adams (18423228) 23 April 2024 (has links)
<p dir="ltr"> The need to develop reliable hypersonic capabilities is of critical import today. Among the most prominent tools used in recent efforts to overcome the challenges of developing hypersonic vehicles are NASA's Configuration Based Aerodynamics (CBAERO) and surrogate modeling techniques. This work presents the development of a tool, CBAERO Surrogate (CBAS), which leverages the advantages of both CBAERO and surrogate models to create a simple and streamlined method for building an aerodynamic database for any given vehicle geometry. CBAS is capable of interfacing with CBAERO directly and builds Kriging or Co-Kriging surrogate models for key aerodynamic parameters without significant user or computational effort. Two applicable geometries representing hypersonic vehicles have been used within CBAS and the resulting Kriging and Co-Kriging surrogate models evaluated against experimental data. These results show that the Kriging model predictions are accurate to CBAERO's level of fidelity, while the Co-Kriging model predictions fall within 0.5%-5% of the experimental data. These Co-Kriging models produced by CBAS are 10%-50% more accurate than CBAERO and the Kriging models and offer a higher fidelity solution while maintaining low computational expense. Based on these initial results, there are promising advancements to obtain in future work by incorporating CBAS to additional applications.</p>
6

Characterization of a transitional hypersonic boundary layer in wind tunnel and flight conditions

Tirtey, Sandy C. 15 January 2009 (has links)
Laminar turbulent transition is known for a long time as a critical phenomenon influencing the thermal load encountered by hypersonic vehicle during their planetary re-entry trajectory. Despite the efforts made by several research laboratories all over the world, the prediction of transition remains inaccurate, leading to oversized thermal protection system and dramatic limitations of hypersonic vehicles performances. One of the reasons explaining the difficulties encountered in predicting transition is the wide variety of parameters playing a role in the phenomenon. Among these parameters, surface roughness is known to play a major role and has been investigated in the present thesis.<p><p>A wide bibliographic review describing the main parameters affecting transition and their coupling is proposed. The most popular roughness-induced transition predictions correlations are presented, insisting on the lack of physics included in these methods and the difficulties encountered in performing ground hypersonic transition experiments representative of real flight characteristics. This bibliographic review shows the importance of a better understanding of the physical phenomenon and of a wider experimental database, including real flight data, for the development of accurate prediction methods.<p><p>Based on the above conclusions, a hypersonic experimental test campaign is realized for the characterization of the flow field structure in the vicinity and in the wake of 3D roughness elements. This fundamental flat plate study is associated with numerical simulations for supporting the interpretation of experimental results and thus a better understanding of transition physics. Finally, a model is proposed in agreement with the wind tunnel observations and the bibliographic survey.<p><p>The second principal axis of the present study is the development of a hypersonic in-flight roughness-induced transition experiment in the frame of the European EXPERT program. These flight data, together with various wind tunnel measurements are very important for the development of a wide experimental database supporting the elaboration of future transition prediction methods. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0954 seconds