• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Influence of Valenced Images on Perceptual Learning

Sulman, Noah 01 April 2008 (has links)
This study aimed to determine whether the rate of perceptual learning in a vernier discrimination task could be influenced by affective images. Forty-eight (30 Female, 18 Male) subjects were instructed to indicate the direction of an offset over 620 trials. Subjects were primed with either negative, positive or neutral photographs before making the discrimination on all test trials. Feedback regarding offset performance was provided on each trial. Despite initial pilot data indicating that subjects primed with negative, arousing images improved performance over those primed with either neutral or positive images, there was ultimately no reliable advantage for any of the affective prime conditions.
2

Reconnaissance de l'émotion thermique

Fu, Yang 05 1900 (has links)
Pour améliorer les interactions homme-ordinateur dans les domaines de la santé, de l'e-learning et des jeux vidéos, de nombreux chercheurs ont étudié la reconnaissance des émotions à partir des signaux de texte, de parole, d'expression faciale, de détection d'émotion ou d'électroencéphalographie (EEG). Parmi eux, la reconnaissance d'émotion à l'aide d'EEG a permis une précision satisfaisante. Cependant, le fait d'utiliser des dispositifs d'électroencéphalographie limite la gamme des mouvements de l'utilisateur. Une méthode non envahissante est donc nécessaire pour faciliter la détection des émotions et ses applications. C'est pourquoi nous avons proposé d'utiliser une caméra thermique pour capturer les changements de température de la peau, puis appliquer des algorithmes d'apprentissage machine pour classer les changements d'émotion en conséquence. Cette thèse contient deux études sur la détection d'émotion thermique avec la comparaison de la détection d'émotion basée sur EEG. L'un était de découvrir les profils de détection émotionnelle thermique en comparaison avec la technologie de détection d'émotion basée sur EEG; L'autre était de construire une application avec des algorithmes d'apprentissage en machine profonds pour visualiser la précision et la performance de la détection d'émotion thermique et basée sur EEG. Dans la première recherche, nous avons appliqué HMM dans la reconnaissance de l'émotion thermique, et après avoir comparé à la détection de l'émotion basée sur EEG, nous avons identifié les caractéristiques liées à l'émotion de la température de la peau en termes d'intensité et de rapidité. Dans la deuxième recherche, nous avons mis en place une application de détection d'émotion qui supporte à la fois la détection d'émotion thermique et la détection d'émotion basée sur EEG en appliquant les méthodes d'apprentissage par machine profondes - Réseau Neuronal Convolutif (CNN) et Mémoire à long court-terme (LSTM). La précision de la détection d'émotion basée sur l'image thermique a atteint 52,59% et la précision de la détection basée sur l'EEG a atteint 67,05%. Dans une autre étude, nous allons faire plus de recherches sur l'ajustement des algorithmes d'apprentissage machine pour améliorer la précision de détection d'émotion thermique. / To improve computer-human interactions in the areas of healthcare, e-learning and video games, many researchers have studied on recognizing emotions from text, speech, facial expressions, emotion detection, or electroencephalography (EEG) signals. Among them, emotion recognition using EEG has achieved satisfying accuracy. However, wearing electroencephalography devices limits the range of user movement, thus a noninvasive method is required to facilitate the emotion detection and its applications. That’s why we proposed using thermal camera to capture the skin temperature changes and then applying machine learning algorithms to classify emotion changes accordingly. This thesis contains two studies on thermal emotion detection with the comparison of EEG-base emotion detection. One was to find out the thermal emotional detection profiles comparing with EEG-based emotion detection technology; the other was to implement an application with deep machine learning algorithms to visually display both thermal and EEG based emotion detection accuracy and performance. In the first research, we applied HMM in thermal emotion recognition, and after comparing with EEG-base emotion detection, we identified skin temperature emotion-related features in terms of intensity and rapidity. In the second research, we implemented an emotion detection application supporting both thermal emotion detection and EEG-based emotion detection with applying the deep machine learning methods – Convolutional Neutral Network (CNN) and LSTM (Long- Short Term Memory). The accuracy of thermal image based emotion detection achieved 52.59% and the accuracy of EEG based detection achieved 67.05%. In further study, we will do more research on adjusting machine learning algorithms to improve the thermal emotion detection precision.

Page generated in 0.0638 seconds