Spelling suggestions: "subject:"agendamento dde tarefa"" "subject:"agendamento dee tarefa""
1 |
Métodos mono e multiobjetivo para o problema de escalonamento de técnicos de campo. / Mono and multiobjective methods for the field technician scheduling problem.Damm, Ricardo de Brito 28 March 2016 (has links)
Um tema pouco estudado na literatura, mas frequentemente encontrado por empresas prestadoras de serviço, é o Problema de Escalonamento de Técnicos de Campos (Field Technician Scheduling Problem). O problema consiste em associar um número de tarefas - em diversos locais, com diferentes prioridades e com janelas de tempo - a uma quantidade de técnicos - com diferentes horários de expediente e com habilidades distintas - que saem no início do horário de trabalho da sede da empresa, para onde devem retornar antes do fim do expediente. Cada tarefa é atendida por um único técnico. Esse problema é estudado neste trabalho. A primeira parte do trabalho apresenta um modelo de programação linear inteira mista (PLIM) e, dada a complexidade do problema, heurísticas construtivas e meta-heurísticas foram desenvolvidas. Na função objetivo, procura-se principalmente maximizar o número ponderado de tarefas executadas em um dia de trabalho, de acordo com as suas prioridades. Em linhas gerais, as heurísticas construtivas ordenam as tarefas de acordo com um critério pré-estabelecido e, em seguida, designam cada uma a um dos técnicos capazes de realiza-la sem violar as restrições do problema. Tendo em conta o bom desempenho obtido em outros problemas semelhantes, foi adotado um Algoritmo Genético denominado Biased Random-Key Genetic Algorithms (BRKGA), que utiliza chaves aleatórias para codificar e decodificar as soluções. Codificadores e decodificadores adaptados ao problema foram desenvolvidos e testes computacionais são apresentados. As soluções obtidas em problemas de pequenas dimensões são comparadas com as soluções ótimas conhecidas e, para aprimorar a avaliação do desempenho nas instâncias médias e grandes, quatro procedimentos para obter limitantes superiores foram propostos. Testes computacionais foram realizados em 1040 instâncias. O BRKGA encontrou 99% das 238 soluções ótimas conhecidas e, nas 720 instâncias de dimensões médias e grandes, ficou em média a 3,8% dos limitantes superiores. As heurísticas construtivas superaram uma heurística construtiva da literatura em 90% das instâncias. A segunda parte do trabalho apresenta uma nova abordagem para o Problema de Escalonamento de Técnicos de Campo: um modelo biobjetivo, onde uma segunda função objetivo buscará que as tarefas prioritárias sejam realizadas o mais cedo possível. Uma versão multiobjectivo do BRKGA foi desenvolvida, considerando diversas estratégias para classificar a população do algoritmo e escolher as melhores soluções (estratégias de elitismo). Codificadores e decodificadores foram criados para o problema multiobjectivo. Os resultados computacionais obtidos são comparados com os resultados de um Algoritmo Genético conhecido na literatura, o Nondominated Sorting Genetic Algorithm II (NSGA II). Para instâncias de pequenas dimensões, os resultados da meta-heurística proposta também são comparados com a fronteira ótima de Pareto de 234 instâncias, obtidas por enumeração completa. Em média, o BRKGA multiobjectivo encontrou 94% das soluções da fronteira ótima de Pareto e, nas instâncias médias e grandes, superou o desempenho do NSGA-II nas medidas de avaliação adotadas (porcentagem de soluções eficientes, hipervolume, indicador epsílon e cobertura). / An important topic in service companies, but little studied until now, is the field technician scheduling problem. In this problem, technicians have to execute a set of jobs or service tasks. Technicians have different skills and working hours. Tasks are in different locations within a city, with different time windows, priorities, and processing times. Each task is executed by only one technician. This problem is addressed in this thesis. The first part of the research presents the mixed integer linear programming model (MILP) and, due to the complexity of this problem, constructive heuristics and metaheuristics were proposed. The objective function is to maximize the sum of the weighted performed tasks in a day, based on the priority of tasks. In general terms, in the proposed constructive heuristics, jobs are ordered according to a criterion and, after that, tasks are assigned to technicians without violating constraints. A Genetic Algorithm (the Biases Randon Key Genetic Algorithm - -RKGA) is applied to the problem, based on its success in similar problems; the BRKGA uses random keys and a decoder transforms each chromosome of the Genetic Algorithm into a feasible solution of the problem. Decoders and encoders adapted to the problem were developed and computational tests are presented. A comparison between the solutions of the heuristic methods and optimal solutions values was also conducted for small instances and, to analyze medium and large instances, four upper bound models were proposed. Computational experiments with 1040 instances were carried out. The BRKGA reached 99% of the 238 optimal solutions and, for 720 medium and large instances, the average upper bound gap was 3,8%. Constructive heuristics overcame a heuristic of the literature in 90% of the instances. The second part of this research presents a new approach of the Field Technician Scheduling Problem: a multiobjective model, with a second objective function to execute the priority tasks as soon as possible. A multiobjective BRKGA was developed, with different strategies to classify the Genetic Algorithm population and to select the elite solutions (elite strategies). Decoders and encoders were developed for the multiobjective problem too. The results were compared with a known Genetic Algorithm, the Nondominated Sorting Genetic Algorithm II (NSGA II). For 234 small instances, the results were compared with the Pareto optimal solutions, obtained by complete enumeration. On average, the BRKGA found 94% of the Pareto optimal solutions and, for 720 medium and large instances, outperformed the NSGA-II by means of the measures adopted (percentage of efficient solutions, hypervolume, epsilon and coverage).
|
2 |
[en] DIRECT AND INDIRECT QUOTATION EXTRACTION FOR PORTUGUESE / [pt] EXTRAÇÃO DE CITAÇÕES DIRETAS E INDIRETAS PARA O PORTUGUÊSRAFAEL DOS REIS SILVA 08 June 2017 (has links)
[pt] Extração de Citações consiste na identificação de citações de um texto e na associação destas com seus autores. Neste trabalho, apresentamos um Extrator de Citações Diretas e Indiretas para o Português. A tarefa
de Extração de Citações já foi abordada usando diversas técnicas em diversos idiomas. Nossa proposta difere das anteriores, pois construímos um modelo de Aprendizado de Máquina que, além de indetificar citações diretas, também identifica as citações indiretas. Citações indiretas são difíceis de serem identificadas num texto por não conter delimitações explícitas. Porém, são mais frequentes do que as delimitadas e, por essa razão, possuem grande importância na extração de informação. Por utilizarmos um modelo baseado em Aprendizado de Máquina, podemos facilmente adaptá-lo para outras línguas, bastando apenas uma lista de verbos do dizer num dado idioma. Poucos foram os sistemas propostos anteriormente que atacaram o
problema das citações indiretas e nenhum deles para o Português usando Aprendizado de Máquina. Nós construímos um Extrator de Citações usando um modelo para o algoritmo do Perceptron Estruturado. Com o objetivo de treinar e avaliar o sistema, construímos o corpus QuoTrees 1.0. Nós anotamos este corpus a fim de atacar o problema das citações indiretas. O Perceptron Estruturado baseado no agendamento de tarefas ponderado tem desempenho F1 igual a 66 por cento para o corpus QuoTrees 1.0. / [en] Quotation Extraction consists of identifying quotations from a text and associating them to their authors. In this work, we present a Direct and Indirect Quotation Extraction System for Portuguese. Quotation Extraction has been previously approached using different techniques and for several languages. Our proposal differs from previous work, because we build a Machine Learning model that, besides recognizing direct quotations, it also recognizes indirect ones in Portuguese. Indirect quotations are hard to be identified in a text, due to the lack of explicit delimitation. Nevertheless, they happen more often then the delimited ones and, for this reason, have an huge importance on information extraction. Due to the fact that we use a Machine Learning model based, we can easily adapt it to other languages, needing only a list of verbs of speech for a given language. Few were the previously proposed systems that tackled the task of indirect quotations and neither of them for Portuguese using a Machine Learning approach. We build a Quotation Extractor using a model for the Structured Perceptron algorithm. In order to train and evaluate the system, we build QuoTrees 1.0 corpus. We annotate it to tackle the indirect quotation problem. The Structured Perceptron based on weight interval scheduling obtains an F1 score of 66 percent for QuoTrees 1.0 corpus.
|
3 |
Métodos mono e multiobjetivo para o problema de escalonamento de técnicos de campo. / Mono and multiobjective methods for the field technician scheduling problem.Ricardo de Brito Damm 28 March 2016 (has links)
Um tema pouco estudado na literatura, mas frequentemente encontrado por empresas prestadoras de serviço, é o Problema de Escalonamento de Técnicos de Campos (Field Technician Scheduling Problem). O problema consiste em associar um número de tarefas - em diversos locais, com diferentes prioridades e com janelas de tempo - a uma quantidade de técnicos - com diferentes horários de expediente e com habilidades distintas - que saem no início do horário de trabalho da sede da empresa, para onde devem retornar antes do fim do expediente. Cada tarefa é atendida por um único técnico. Esse problema é estudado neste trabalho. A primeira parte do trabalho apresenta um modelo de programação linear inteira mista (PLIM) e, dada a complexidade do problema, heurísticas construtivas e meta-heurísticas foram desenvolvidas. Na função objetivo, procura-se principalmente maximizar o número ponderado de tarefas executadas em um dia de trabalho, de acordo com as suas prioridades. Em linhas gerais, as heurísticas construtivas ordenam as tarefas de acordo com um critério pré-estabelecido e, em seguida, designam cada uma a um dos técnicos capazes de realiza-la sem violar as restrições do problema. Tendo em conta o bom desempenho obtido em outros problemas semelhantes, foi adotado um Algoritmo Genético denominado Biased Random-Key Genetic Algorithms (BRKGA), que utiliza chaves aleatórias para codificar e decodificar as soluções. Codificadores e decodificadores adaptados ao problema foram desenvolvidos e testes computacionais são apresentados. As soluções obtidas em problemas de pequenas dimensões são comparadas com as soluções ótimas conhecidas e, para aprimorar a avaliação do desempenho nas instâncias médias e grandes, quatro procedimentos para obter limitantes superiores foram propostos. Testes computacionais foram realizados em 1040 instâncias. O BRKGA encontrou 99% das 238 soluções ótimas conhecidas e, nas 720 instâncias de dimensões médias e grandes, ficou em média a 3,8% dos limitantes superiores. As heurísticas construtivas superaram uma heurística construtiva da literatura em 90% das instâncias. A segunda parte do trabalho apresenta uma nova abordagem para o Problema de Escalonamento de Técnicos de Campo: um modelo biobjetivo, onde uma segunda função objetivo buscará que as tarefas prioritárias sejam realizadas o mais cedo possível. Uma versão multiobjectivo do BRKGA foi desenvolvida, considerando diversas estratégias para classificar a população do algoritmo e escolher as melhores soluções (estratégias de elitismo). Codificadores e decodificadores foram criados para o problema multiobjectivo. Os resultados computacionais obtidos são comparados com os resultados de um Algoritmo Genético conhecido na literatura, o Nondominated Sorting Genetic Algorithm II (NSGA II). Para instâncias de pequenas dimensões, os resultados da meta-heurística proposta também são comparados com a fronteira ótima de Pareto de 234 instâncias, obtidas por enumeração completa. Em média, o BRKGA multiobjectivo encontrou 94% das soluções da fronteira ótima de Pareto e, nas instâncias médias e grandes, superou o desempenho do NSGA-II nas medidas de avaliação adotadas (porcentagem de soluções eficientes, hipervolume, indicador epsílon e cobertura). / An important topic in service companies, but little studied until now, is the field technician scheduling problem. In this problem, technicians have to execute a set of jobs or service tasks. Technicians have different skills and working hours. Tasks are in different locations within a city, with different time windows, priorities, and processing times. Each task is executed by only one technician. This problem is addressed in this thesis. The first part of the research presents the mixed integer linear programming model (MILP) and, due to the complexity of this problem, constructive heuristics and metaheuristics were proposed. The objective function is to maximize the sum of the weighted performed tasks in a day, based on the priority of tasks. In general terms, in the proposed constructive heuristics, jobs are ordered according to a criterion and, after that, tasks are assigned to technicians without violating constraints. A Genetic Algorithm (the Biases Randon Key Genetic Algorithm - -RKGA) is applied to the problem, based on its success in similar problems; the BRKGA uses random keys and a decoder transforms each chromosome of the Genetic Algorithm into a feasible solution of the problem. Decoders and encoders adapted to the problem were developed and computational tests are presented. A comparison between the solutions of the heuristic methods and optimal solutions values was also conducted for small instances and, to analyze medium and large instances, four upper bound models were proposed. Computational experiments with 1040 instances were carried out. The BRKGA reached 99% of the 238 optimal solutions and, for 720 medium and large instances, the average upper bound gap was 3,8%. Constructive heuristics overcame a heuristic of the literature in 90% of the instances. The second part of this research presents a new approach of the Field Technician Scheduling Problem: a multiobjective model, with a second objective function to execute the priority tasks as soon as possible. A multiobjective BRKGA was developed, with different strategies to classify the Genetic Algorithm population and to select the elite solutions (elite strategies). Decoders and encoders were developed for the multiobjective problem too. The results were compared with a known Genetic Algorithm, the Nondominated Sorting Genetic Algorithm II (NSGA II). For 234 small instances, the results were compared with the Pareto optimal solutions, obtained by complete enumeration. On average, the BRKGA found 94% of the Pareto optimal solutions and, for 720 medium and large instances, outperformed the NSGA-II by means of the measures adopted (percentage of efficient solutions, hypervolume, epsilon and coverage).
|
4 |
[en] QUOTATION EXTRACTION FOR PORTUGUESE / [pt] EXTRAÇÃO DE CITAÇÕES PARA O PORTUGUÊSWILLIAM PAULO DUCCA FERNANDES 24 January 2017 (has links)
[pt] A Extração de Citações consiste na identificação de citações de um texto e na associação destas com seus autores. Neste trabalho, apresentamos um sistema de Extração de Citações para Português. A tarefa de Extração de Citações já foi abordada usando diversas técnicas e para diversas línguas.Nossa proposta é diferente dos trabalhos anteriores, pois usamos Aprendizado de Máquina para construir automaticamente regras especializadas ao invés de regras criadas por humanos. Modelos de Aprendizado de Máquina geralmente apresentam forte capacidade de generalização comparados a modelos feitos por humanos. Além disso, nós podemos facilmente adaptar nosso modelo para outras línguas, precisando apenas de uma lista de verbos de citação para uma dada língua. Os sistemas propostos anteriormente provavelmente precisariam de uma adaptação no conjunto de regras de forma a classificar corretamente as citações, o que consumiria tempo. Nós atacamos a tarefa de Extração de Citações usando um modelo para o algoritmo de Aprendizado de Transformações Guiado por Entropia e um modelo para o algoritmo do Perceptron Estruturado. Com o objetivo de treinar e avaliar o sistema, nós construímos o corpus GloboQuotes com notícias extraídas do portal globo.com. Adicionamos etiquetas morfossintáticas ao corpus, utilizando um anotador estado da arte. O Perceptron Estruturado baseado no agendamento de tarefas ponderado tem desempenho F sub Beta igual a 1 igual a 76,80 por cento. / [en] Quotation Extraction consists of identifying quotations from a text and associating them to their authors. In this work, we present a Quotation Extraction system for Portuguese. Quotation Extraction has been previously approached using different techniques and for several languages. Our proposal differs from previous work since we use Machine Learning to automatically build specialized rules instead of human-derived rules. Machine Learning models usually present stronger generalization power compared to human-derived models. In addition, we are able to easily adapt our model to other languages, needing only a list of verbs of speech for a given language. The previously proposed systems would probably need a rule set adaptation to correctly classify the quotations, which would be time consuming. We tackle the Quotation Extraction task using one model for the Entropy Guided Transformation Learning algorithm and another one for the Structured Perceptron algorithm. In order to train and evaluate the system, we have build the GloboQuotes corpus, with news extracted from the globo.com portal. We add part-of-speech tags to the corpus using a state-of-the-art tagger. The Structured Perceptron based on weighted interval scheduling obtains an F sub Beta equal 1 score of 76.80 per cent.
|
Page generated in 0.1213 seconds