• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation multi-physique de l'électrode de graphite au sein d'une batterie lithium-ion : Etude des hétérogénéités et des mécanismes de vieillissement / Physics-based modeling of graphite electrode inside Lithium-ion battery : Study of heterogeneities and aging mechanisms.

Dufour, Nicolas 08 February 2019 (has links)
L’électrode négative des batteries lithium-ion est communément en graphite. Bien qu’ayant une capacité spécifique intéressante, le vieillissement, la cinétique d’intercalation et le transport du lithium à la fois dans le matériau actif et les porosités de l’électrode limitent son fonctionnement optimal et homogène. Dans ce travail de thèse, les mécanismes à l’origine de ces limites sont explicités grâce à un modèle multi-physique de type électrode poreuse.Une étude de sensibilité des paramètres du modèle a montré l’importance des paramètres liés à la cinétique d’intercalation et au transport du lithium en phase solide et liquide. L’exploitation du modèle, validé expérimentalement, montre que, lors du fonctionnement de l’électrode, les apparences d’hétérogénéité de lithiation sont corrélées à la forme particulière du potentiel d’équilibre du graphite vis-à-vis de son taux de lithiation. La modélisation de la distribution de taille des particules, amplifie grandement ces hétérogénéités et dégrade fortement la performance globale de l’électrode. En première approche, une mesure operando de la distribution des états de lithiation confirme l’aspect hétérogène du fonctionnement de l’électrode.Les données des performances en cyclages et en calendaire de cellules graphite-NMC ont permis de construire différents modèles de vieillissement de l’électrode. La croissance de la couche de passivation (SEI) peut expliquer à elle seule la perte de lithium cyclable. Les hétérogénéités de SEI obtenues par le modèle sont négligeables en l’état. Les gains de capacités et les pertes brutales sont expliqués respectivement par des mécanismes de dissolution de SEI et de formation de lithium-plating. / Negative electrodes of lithium-ion batteries are mainly based on graphite, because of their good electrochemical properties. Unfortunately, intercalation kinetics, aging phenomena and lithium transport through active material and electrode porosity decay the optimal and homogeneous operations of this electrode. Origins of these limits are investigated in this work thanks to a porous electrode model.A sensitivity study indicates that preponderant model parameters are related to the kinetics and lithium transport in solid and liquid phases. The model is experimentally validated at a cell scale and predicts the appearances of lithium heterogeneities during the graphite lithiation. They are correlated to the staged shape of the graphite equilibrium potential. Modeling additional inhomogeneity sources, especially particle distribution, amplifies these heterogeneities and decrease drastically cell performance. In a first approach, an operando measure of the local lithiation state confirms this heterogeneity aspect during operations.In a second part, data of cycled and calendar aged graphite-NMC cell validates different aging models. The growth of the passive layer on the graphite surface (SEI) explains the cyclable lithium loss on its own. SEI heterogeneities are negligible in the porous model as opposition to experimental finding. Capacity recoveries and sudden loss are explained respectively via a SEI dissolution mechanism and lithium-plating correlated to the degradation of the electrode transport properties.
2

Étude et modélisation du fonctionnement et du vieillissement des « Lithium-Ion Capacitors » (LiC) / Study and modeling of the functioning and aging of Lithium-ion Capacitors (LiC)

El Ghossein, Nagham 06 December 2018 (has links)
Le « Lithium-Ion Capacitor » (LiC) est un supercondensateur hybride dont les caractéristiques peuvent être placées entre un condensateur à double couche électrique (supercondensateur) et une batterie lithium-ion. Il possède des densités d’énergie et de puissance intermédiaires grâce à sa composition hybride à base d'une électrode positive en charbon actif identique à celle d’un supercondensateur et d'une électrode négative en carbone pré-lithié identique à celle d’une batterie lithium-ion. L'objectif de cette thèse est d'étudier le vieillissement des LiC industrialisés aussi bien dans le cadre d’un vieillissement en stockage (calendaire) qu’en utilisation (cyclage). Un de leur spécificité principale concerne l’évolution particulière de leur capacité en fonction de la tension à leurs bornes (C(V)). Le premier type de vieillissement qu’est le vieillissement calendaire permet de représenter le comportement des LiC lorsqu’ils sont stocker avant utilisation ou lorsqu’ils sont en veille. La dégradation de leurs paramètres liée au vieillissement, est alors essentiellement influencée par leur tension et la température. Des essais de vieillissement à trois tensions caractéristiques et deux températures différentes sont étudiés. L’évolution des impédances des cellules a été suivie tout au long du vieillissement afin d’identifier un modèle électrique de suivi du vieillissement dont les paramètres sont liés aux phénomènes électrochimiques. Par ces essais, la meilleure tension de stockage des LiC, permettant la prolongation de leur durée de vie a été mise en évidence. Par ailleurs, des mécanismes de vieillissement différents d’une tension caractéristique à l’autre sont révélés et soulignent la spécificité de fonctionnement des LiC. Ces résultats ont été confirmés par des analyses post-mortem. Le second type de vieillissement étudié est le vieillissement par cyclage qui prend en compte l'impact du courant sur la durée de vie des LiC. Le choix des profils de courant de cyclage a été effectué en considérant le principe de fonctionnement électrochimique des LiC. Les évolutions des impédances et des courbes C(V) des cellules sont comparées et interprétées. Les mécanismes de vieillissement prenant naissance lors du cyclage continu sont abordés. Ils dépendent de la fenêtre de potentiel sur laquelle les LiC fonctionnent pendant leur utilisation. La fenêtre de tension optimale qui assure une longue durée de vie des LiC est aussi mise en évidence / Lithium-Ion Capacitors (LiCs) are the new emerging technology of hybrid supercapacitors that combines the advantages of conventional supercapacitors and lithium-ion batteries. They provide intermediate energy and power densities due to their hybrid composition based on a positive electrode made of activated carbon similar to that of supercapacitors and a negative electrode made of pre-lithiated carbon similar to that of lithium-ion batteries. The aim of this thesis is to study the aging of commercial LiCs using two accelerated aging procedures: calendar aging and cycle aging. One of their main particularities concerns the nonlinear capacitance evolution with respect to their voltage (C(V) curve). The first accelerated aging test is related to the calendar life of LiCs that represents their behavior independently of their usage. The degradation of their parameters due to aging is mainly affected by the voltage and the temperature only. These tests were applied to several cells at three different voltage values and two temperatures. The evolution of their impedances were followed during the whole aging period in order to identify an electrical model that can accurately describe the progress of aging and that possesses electrochemically meaningful parameters. The best voltage value that ensures the extension of the lifetime of LiCs was identified using the results of these tests. In addition, aging mechanisms that extremely depend on the applied voltage value were identified. They highlight the particularity of the functioning of LiCs. These results were confirmed using post-mortem analyses. The second accelerated aging test is the cycle aging that assesses the impact of the current on the life cycle of LiCs. The choice of current profiles was based on the electrochemical operating principle of LiCs. The evolution of the impedances and the C(V) curves of LiCs were compared and analyzed. Aging mechanisms produced during cycle aging were also evaluated. They depend on the voltage range in which the LiC operates. The optimal voltage window that guarantees a long lifetime of LiCs was highlighted
3

Physics-Based Modeling of Lithium Plating and Dendrite Growth for Prediction of Extreme Fast-Charging

Wise, Matthew J. 06 September 2022 (has links)
No description available.
4

Analysis of aging mechanisms in Li-ion cells used for traction batteries of electric vehicles and development of appropriate diagnostic concepts for the quick evaluation of the battery condition / Analyse des mécanismes de vieillissement des cellules Li-ion utilisées pour les batteries de traction des véhicules électriques et développement de concepts de diagnostic appropriés pour l'évaluation rapide de l'état de la batterie

Schlasza, Christian 12 December 2016 (has links)
Dans cette thèse, les mécanismes de vieillissement des cellules Li-ion sont analysés sur un niveau théorique,assisté par une AMDEC (Analyse des modes de défaillance, de leurs effets et de leur criticité). L'accent est mis surla famille des cellules lithium fer phosphate (LFP) utilisées comme batteries de traction dans les applicationsvéhicules électriques.L'objectif de la partie xpérimentale de cette thèse est le développement d'un concept d'un outil de diagnostic pourla détermination rapide d'état de la batterie. Une expérience de vieillissement accélérée est réalisée avec un groupede cellules LFP de haute capacité (70Ah). Les cellules sont analysées en utilisant des méthodes de mesured'impédance dans les domaines temporel et fréquentiel. La pectroscopie d'Impédance Électrochimique (SIE, ouEIS en anglais) s'est trouvée être un bon outil pour révéler des informations intéressantes sur l'état de santé (Stateof-Health, SOH) de la batterie.Des modèles de batterie sont utilisés pour l'interprétation des résultats de mesure. En comparant différents modèlesdu circuit équivalent (ECMs), un modèle est choisi. Ce modèle est utilisé pour la détermination du SOC et étendupour la détermination du SOH. Un concept pour la détermination du SOH est développé, permettant uneapproximation de la capacité de la batterie dans une période de temps de moins de 30s, si les onditions de labatterie et d'environnement, comme la température et l'état de charge de la batterie, sont connus. / In this thesis, the aging mechanisms withing Li-ion cells are analyzed on a theoretical level, supported by an FMEA(Failure ode and Effects Analysis). The focus lies on the group of lithium iron phosphate (LFP) cells used fortraction batteries in electric vehicles. Scope of the experimental part of the thesis is the development of a diagnosticconcept for the quick battery state determination. A group of high capacity LFP cells (70Ah) designed for tractionpurposes in electric vehicles is aged artificially and investigated afterwards by impedance measurements in the timeand frequency domain. Electrochemical impedance spectroscopy (EIS) is found to reveal interesting information onthe battery's State-of-Health (SOH).For the interpretation of the measurement results, battery models are employed. Different equivalent circuit models(ECMs) are compared and an appropriate model is chosen, which is used for the SOC (State-of-Charge)determination and extended for the SOH (State-of-Health) determination. An SOH determination concept isdeveloped, which allows the approximation of the cell capacity in less than 30s, if the battery and environmentalconditions, such as the temperature and the cell's SOC, are known.

Page generated in 0.0864 seconds