Spelling suggestions: "subject:"agrégats multicellular"" "subject:"agrégats cellulaires""
1 |
Elaboration d'un nouvel hydrogel pour l'étude in vitro des gliomes et modélisation mathématique de leur origine / Development of a New Hydrogel for in Vitro Gliomas Study and Mathematical Modeling of their OriginGontran, Emilie 15 December 2017 (has links)
Les gliomes sont des tumeurs qui seforment par prolifération anormale de cellules dansle tissu cérébral. La dangerosité de ces tumeursréside dans le fait que la plupart des gliomes sontinvasifs : les cellules tumorales migrent dans le tissusain autour de la tumeur. Ces cellules tumoralesisolées provoquent des récidives quasi systématiquesaprès traitement (chirurgie, chimiothérapie,radiothérapie), rendant ces tumeurs incurablesactuellement et conduisant au décès du patient. Il estimportant d'associer des études fondamentales pourmieux comprendre leur évolution dès l'origine et desétudes plus appliquées en développant de nouveauxsubstrats pour reproduire in vitro leur évolution. Lescellules progénitrices des oligodendrocytes (OPC)représentent la plus grande population de cellules enprolifération et la plus largement distribuée dans lecerveau adulte, ce qui en fait un suspect idéal del’origine des gliomes. A partir de donnéesexpérimentales de la littérature sur la dynamique invivo de ces cellules, un modèle mathématiquereproduisant cette dynamique dans un tissu sain a étédéveloppé.Ce modèle montre également que les OPC pourraientêtre à l’origine de toutes les formes de gliomerencontrées aussi bien de bas grade que de hautgrade. Par ailleurs, l’approche expérimentale utiliséevisait à développer un substrat de culture cellulaireadapté à l’étude des gliomes in vitro. Ainsi, unhydrogel biocompatible, minimaliste et contrôlable aété élaboré. Celui-ci mime l’élasticité de la matriceextracellulaire (MEC) cérébrale avec une rigidité del’ordre de 200 Pa et l’effet adhésif des molécules dela MEC impliqué dans l’adhésion et la proliférationdes cellules tumorales. Grâce à ses propriétés,l’hydrogel favorise la survie de près de 90% desmodèles cellulaires de gliome utilisés dans notreétude et supporte la croissance en trois dimensionsd’agrégats multicellulaires semblables à lamorphologie de micro-tumeurs in vivo. Le modèled’hydrogel est donc validé pour favoriser la viabilitéet la prolifération cellulaires. Les perspectives detravail futures porteront sur l'optimisation de sacomposition pour mimer de manière encore plusréaliste la croissance tumorale in vivo. / Gliomas are brain tumors arising fromanomalous cell proliferation into the brain tissue.The hazard of these tumors resides in their invasiveability : tumor cells migrate into the healthy tissuesurrounding the tumor. These isolated cells causequasi systematic recurrences after treatment(surgery, chemotherapy, radiotherapy) making thesetumors currently incurable and leading to patientdeath. Hence, it is important to associatefundamental studies for better understanding of theirevolution from their origin with more appliedstudies developing new substrates for reproducingtheir evolution in vitro. Oligodendrocyte progenitorcells (OPC) are the most widely spread proliferatingpopulation in the adult brain, which makes them themain suspect of causing gliomas origin. Fromexperimental data in the literature about in vivodynamic of OPC, a mathematical model that depictsthis dynamic into a healthy tissue has beendeveloped.This model also shows that OPC could be at theorigin of all glioma forms from low to high grade.Furthermore, the experimental approach used aimedat designing a cell culture substrate adapted toglioma studies in vitro. Thus, a biocompatible,minimalistic and controllable hydrogel has beenperformed. It mimics brain extracellular matrix(ECM) elasticity around 200 Pa and the adhesiveeffect of ECM molecules involved in tumor celladhesion and proliferation. Due to these properties,the hydrogel contributes to around 90% of gliomacell models survival used in our study and promotesmulticellular aggregates growth in three dimensionsthat look like in vivo microtumors morphology. Thishydrogel model is thus validated for cell viabilityand proliferation. Future works will be devoted tothe optimization of its composition for bettermimicking of tumor growth in vivo in a morerealistic manner.
|
2 |
Mesure des déplacements cellulaires dans les tissus non transparents : une application de la diffusion dynamique de la lumière / Measuring cell displacements inside non-transparent tissues : an application of dynamic light scatteringBrunel, Benjamin 29 October 2018 (has links)
Lorsqu'une tumeur grossit, elle exerce une pression sur les tissus environnants et est comprimée en retour. Des expériences sur un modèle de tumeur in vitro, appelé sphéroïde, ont montré que cette pression influence largement le devenir du tissu cancéreux, notamment en freinant sa croissance, mais aussi en le rendant plus invasif. Pour mieux comprendre ce dernier effet, nous avons cherché à étudier le comportement migratoire des cellules à l'intérieur d'un sphéroïde sous pression. Observer l'intérieur d'un sphéroïde pose cependant un problème technique car les méthodes usuelles d'imagerie ne sont pas utilisables dans des tissus épais (> 100 μm). L'imagerie classique étant limitée en profondeur à cause de la diffusion de la lumière, nous nous sommes tournés vers une méthode qui utilise justement celle-ci : la diffusion dynamique de lumière ou DLS (Dynamic Light Scattering). Nous avons développé son application à la migration cellulaire, afin d'obtenir la distribution des déplacements relatifs des cellules au cours du temps. Cette mesure est faite sans utiliser de marqueurs spécifiques et est applicable à des sphéroïdes allant jusqu'à 400 μm de diamètre. Nous avons ainsi mis en évidence une organisation radiale du sphéroïde en termes de mobilité, avec des cellules rapides en surface et plus lentes au centre. Nous avons aussi montré qu'en appliquant une contrainte au sphéroïde, la vitesse moyenne diminue jusqu'à être réduite de moitié pour des pressions supérieures à 15kPa. Une autre équipe a mesuré par ailleurs une augmentation de la vitesse des cellules en surface suite à une compression, ce qui indique que l'organisation radiale se retrouve dans la réponse à la pression. Nous avons montré que cette sensibilité à la pression est une propriété qui émerge de l'organisation 3D du tissu, dans laquelle la matrice extracellulaire joue un rôle primordial. Enfin, pour explorer les possibilités qu'offre notre technique, nous l'avons appliquée à une autre question : comment la migration des macrophages est-elle affectée par les signaux provenant de cellules apoptotiques ? Les résultats ont montré que les cellules apoptotiques précoces augmentent la vitesse des macrophages tandis que les cellules apoptotiques tardives la réduisent. D'un cas à l'autre, la longueur de persistance du mouvement est conservée. / As a tumor grows, it exerts a mechanical pressure on its surrounding tissue and is compressed back as a reaction. Recent experiments on an in vitro tumor model, called spheroid, have shown that this pressure is crucial for the fate of the cancerous tissue. In particular, the pressure slows down its growth, but makes it more invasive. To further understand the latter effect, we decided to study the migration of cells inside spheroids under pressure. However, imaging the inside of a spheroid is technically challenging as usual microscopy methods do not work on thick tissues (> 100 μm). Standard imaging methods are limited in terms of depth penetration because of light scattering. For this reason, we decided to take advantage of this scattered light with a method called Dynamic Light Scattering (DLS). We developed its application to cell migration in order to measure the distribution of cells displacements over time. The measurement is label-free and works with spheroids as thick as 400 μm in diameter. By this means, we revealed a radial organization inside the spheroid in terms of mobility, with fast cells at the surface and slower cells in the core. We also showed that applying a pressure onto spheroids decreases the average cell speed by a factor up to two for pressure greater than 15 kPa. Another team reported an increase in the speed of cells located at the surface of a compressed spheroid, which implies that the radial organization is also true for the impact of pressure. We demonstrated that this sensitivity to an external pressure is a 3D emergent property, in which the extracellular matrix plays an essential role. Finally, we explored the potential of our technique by addressing another question: how do apoptotic cells signals affect the migration of macrophages? We found that early apoptotic cells increase the speed of macrophages whereas late apoptotic cells decrease it. In both cases, the persistence length of the motion is the same.
|
3 |
Agrégats multicellulaires magnétiques : mécanique des tissus et biodégradation des nanomatériaux / Magnetic multicellular aggregates : tissues mechanics and nanomaterials biodegradationMazuel, François 22 September 2016 (has links)
Les nanoparticules d’oxyde de fer ont récemment été envisagées comme outils pour l’ingénierie tissulaire. Elles sont internalisées par les cellules qui deviennent alors magnétiques. Des forces magnétiques peuvent ainsi être appliquées à distance sur ces cellules pour contrôler leur organisation spatiale et temporelle, et former un tissu. Ces applications posent la question du devenir des nanoparticules, qui conditionne in fine leur utilisation clinique. Ce travail s’inscrit dans ce cadre et comporte deux axes.La première partie traite de l’étude des propriétés mécaniques et rhéologiques de tissus biologiques modèles, les agrégats multicellulaires. Une combinaison de méthodes magnétiques est proposée pour fabriquer et stimuler des tissus magnétiques de taille et de forme contrôlées. Ces agrégats magnétiques sont soumis à distance à des contraintes magnétiques d’écrasement. L’étude de leur déformation permet d’explorer des caractéristiques statiques et dynamiques rarement étudiées à l’échelle tissulaire (tension de surface, loi puissance, non linéarité). La deuxième partie se concentre sur l'évolution à moyen terme des nanoparticules dans leur environnement tissulaire, au cœur des agrégats. En combinant ce tissu modèle avec des méthodes de quantification magnétique, nous avons pu mettre en évidence une dégradation massive d’origine endosomale, sans pour autant impacter de manière importante l’homéostasie du fer. De plus, le modèle tissulaire mis en place permet d’étudier la biodégradation intracellulaire de n’importe quel type de nanoparticules. Nous l'avons testé avec des nano-architectures plus complexes: nanocubes, nanodimers, ou nanoparticules magnéto-plasmoniques / Iron oxide nanoparticles are promising candidates for applications in nanomedecine (contrast agents, vectors). They were also recently considered as a powerful tool for tissue engineering. Cells, magnetized through nanoparticules internalization, can be organized in space and time thanks to remote magnetic forces. For all those applications the nanoparticles fate inside the cells remains a key issue concerning the final clinical use. The first part of this work focuses on the study of the mechanical and rheological properties of biological tissue models, the multicellular aggregates. An original magnetic molding method and two different experimental setups were developed to produce aggregates with controlled shapes and sizes, to measure their surface tension and to evidence their power law and non linear behavior.In the second part, we investigate the medium term fate of iron oxide nanoparticles in stem cells forming a spheroid as a model tissue. We reveal a massive endosomal degradation. The set of methods and spheroid model we propose allow a comprehensive and quantitative follow up of the biodegradation of any nanomaterials. This was illustrated by investigating the degradation of nanomaterials with more complex nano-architectures (nanocubes, nanodimers) and assessing the efficiency of a protection strategy to modulate the biodegradation
|
Page generated in 0.0529 seconds