• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing world scale air traffic data to find Near Mid-Air Collisions

Hermansson, Leopold January 2023 (has links)
In order to increase the safety of all air travel, technologies that continueto augment the pilot's ability to avoid collisions and stay clear of danger areneeded. But, before these can be certified and deployed, their performance andpotential failure cases have to be understood. This requires evaluating a modelof the system on simulated encounters, consisting of different trajectoriesthat should replicate the real world. This is commonly done using a statistical encounter model, which produces largeamounts of data but relies on the accuracy of the statistical model, thuslimited in its ability to produce realistic data. The goal with this project isto create an encounter dataset of real trajectories that would provide analternative to encounter models. This is done using an ADS-B dataset from The OpenSky Network (provided byDaedalean AI), consisting of 226 billion air traffic data points from 2019.First, a solution to efficiently query and reconstruct trajectories from thedataset is designed and implemented. Using it, a NMAC (Near Mid-Air Collision)dataset is created to demonstrate the viability of ADS-B as a source forcreating an encounter dataset, and to prove the capabilities of the designedsolution.
2

Development of Aircraft Wake Vortex Dynamic Separations Using Computer Simulation and Modeling

Roa Perez, Julio Alberto 29 June 2018 (has links)
This dissertation presents a research effort to evaluate wake vortex mitigation procedures and technologies in order to decrease aircraft separations, which could result in a runway capacity increase. Aircraft separation is a major obstacle to increasing the operational efficiency of the final approach segment and the runway. An aircraft in motion creates an invisible movement of air called wake turbulence, which has been shown to be dangerous to aircraft that encounter it. To avoid this danger, aircraft separations were developed in the 1970s, that allows time for wake to be dissipated and displaced from an aircraft's path. Though wake vortex separations have been revised, they remain overly conservative. This research identified 16 concepts and 3 sub-concepts for wake mitigation from the literature. The dissertation describes each concept along with its associated benefits and drawbacks. All concepts are grouped, based on common dependencies required for implementation, into four categories: airport fleet dependent, parallel runway dependent, single runway dependent, and aircraft or environmental condition dependent. Dynamic wake vortex mitigation was the concept chosen for further development because of its potential to provide capacity benefit in the near term and because it is initiated by air traffic control, not the pilot. Dynamic wake vortex mitigation discretizes current wake vortex aircraft groups by analyzing characteristics for each individual pair of leader and follower aircraft as well as the environment where the aircraft travel. This results in reduced aircraft separations from current static separation standards. Monte Carlo simulations that calculate the dynamic wake vortex separation required for a follower aircraft were performed by using the National Aeronautics and Space Administration (NASA) Aircraft Vortex Spacing System (AVOSS) Prediction Algorithm (APA) model, a semi-empirical wake vortex behavior model that predicts wake vortex decay as a function of atmospheric turbulence and stratification. Maximum circulation capacities were calculated based on the Federal Aviation Administration's (FAA) proposed wake recategorization phase II (RECAT II) 123 x 123 matrix of wake vortex separations. This research identified environmental turbulence and aircraft weight as the parameters with the greatest influence on wake vortex circulation strength. Wind has the greatest influence on wake vortex lateral behavior, and aircraft mass, environmental turbulence, and wind have the greatest influence on wake vortex vertical position. The research simulated RECAT II and RECAT III dynamic wake separations for Chicago O'Hare International (ORD), Denver International Airport (DEN) and LaGuardia Airport (LGA). The simulation accounted for real-world conditions of aircraft operations during arrival and departure: static and dynamic wake vortex separations, aircraft fleet mix, runway occupancy times, aircraft approach speeds, aircraft wake vortex circulation capacity, environmental conditions, and operational error buffers. Airport data considered for this analysis were based on Airport Surface Detection Equipment Model X (ASDE-X) data records at ORD during a 10-month period in the year 2016, a 3-month period at DEN, and a 4-month period at LGA. Results indicate that further reducing wake vortex separation distances from the FAA's proposed RECAT II static matrix, of 2 nm and less, shifts the operational bottleneck from the final approach segment to the runway. Consequently, given current values of aircraft runway occupancy time under some conditions, the airport runway becomes the limiting factor for inter-arrival separations. One of the major constraints of dynamic wake vortex separation at airports is its dependence on real-time or near-real-time data collection and broadcasting technologies. These technologies would need to measure and report temperature, environmental turbulence, wind speed, air humidity, air density, and aircraft weight, altitude, and speed. / PHD
3

Vigilância dependente automática no controle de tráfego aéreo: avaliação de risco baseada em modelagem em redes de Petri fluidas e estocásticas. / Automatic dependent surveillance on air traffic control: risk assessment based on fluid stochastic Petri nets modeling.

Vismari, Lúcio Flávio 21 September 2007 (has links)
Ao longo das últimas décadas, o paradigma de sistemas críticos em segurança vem sofrendo transformações como forma de se adequar às novas necessidades demandadas, tais como redução de custos e aumento da produtividade. No Sistema de Gerenciamento de Tráfego Aéreo, esta transformação é preconizada pelo paradigma CNS/ATM (Communication, Navigation, Surveillance / Air Traffic Management), baseado no uso de novas tecnologias digitais, sobretudo satélites, aplicadas à comunicação, à vigilância, à navegação e ao gerenciamento do tráfego aéreo. O CNS/ATM visa reduzir as restrições do atual paradigma de tráfego aéreo como forma de atender sua crescente demanda, mantendo (ou melhorando) os atuais níveis de segurança. Porém, esta mudança de paradigma traz consigo novos desafios e necessidades, sobretudo, quanto à forma de se avaliar os sistemas resultantes. Em face destes novos desafios e problemas enfrentados, este trabalho propôs um método de avaliação de risco, constituído pela união dos métodos \"absoluto\" e \"relativo\" preconizados pela Organização da Aviação Civil Internacional (OACI), pelo emprego do formalismo das redes de Petri Fluidas e Estocásticas (RPFE) na modelagem dos sistemas, e pela comparação entre os valores de métricas de segurança estimados para o sistema avaliado e para um sistema legado. Este método foi aplicado para avaliar a segurança na mudança do atual paradigma de vigilância aérea, baseado em equipamentos Radar, para o paradigma de Vigilância Dependente Automática por Radiodifusão (ADS-B). Como conclusões, o método proposto mostrou-se promissor para avaliar a segurança de sistemas baseados nos atuais paradigmas de sistema críticos em segurança, especialmente o CNS/ATM, onde o formalismo das RPFE proporcionou modelar suas principais características, e a simulação por eventos discretos permitiu estimar as métricas desejadas. Além disso, a ADS-B mostrou-se uma aplicação viável para a vigilância no Sistema de Controle de Tráfego Aéreo, sendo capaz de reduzir o nível de exposição das aeronaves a eventos de perda de separação e, assim, melhorar os níveis de segurança do tráfego aéreo. / In last decades, the safety critical systems paradigm has changing to adapt itself to new necessities, such as costs reduction and productivity demand growth. In the Air Traffic System, those changes are ruled by CNS/ATM paradigm (Communication, Navigation, Surveillance / Air Traffic Management), based on new digital Technologies, mainly Satellites, applied to Communication, Surveillance, Navigation and Air Traffic Management. CNS/ATM intends to reduce the restrictions of current air traffic paradigm, enabling the growth of air traffic capacity without affecting current safety levels. However, this new paradigm brings together new challenges and needs, mainly related to safety assessment. In face of these new challenges, this work proposed a method of risk assessment constituted by the union of the \"absolute\" and \"relative\" assessment methods adopted by the International Civil Aviation Organization (ICAO), by modeling systems using Fluid Stochastic Petri Nets (FSPN) formalism, and by comparison between safety metrics obtained from proposed and legacy system simulations. This method was applied to assess a new concept of air traffic surveillance, named \"Automatic Dependent Surveillance - Broadcasting\" (ADS-B). As main conclusions, the proposed method was promising to assess system safety properties based on current safety critical system paradigm, especially the CNS/ATM, where FSPN formalism provided important modeling capabilities and discrete event simulation allowed estimating the desired safety metric. Besides, ADS-B has meaningfully reduced the separation losses risks and, therefore, it could be used to air traffic control surveillance system to improve capacity and/or safety levels of air traffic system.
4

Vigilância dependente automática no controle de tráfego aéreo: avaliação de risco baseada em modelagem em redes de Petri fluidas e estocásticas. / Automatic dependent surveillance on air traffic control: risk assessment based on fluid stochastic Petri nets modeling.

Lúcio Flávio Vismari 21 September 2007 (has links)
Ao longo das últimas décadas, o paradigma de sistemas críticos em segurança vem sofrendo transformações como forma de se adequar às novas necessidades demandadas, tais como redução de custos e aumento da produtividade. No Sistema de Gerenciamento de Tráfego Aéreo, esta transformação é preconizada pelo paradigma CNS/ATM (Communication, Navigation, Surveillance / Air Traffic Management), baseado no uso de novas tecnologias digitais, sobretudo satélites, aplicadas à comunicação, à vigilância, à navegação e ao gerenciamento do tráfego aéreo. O CNS/ATM visa reduzir as restrições do atual paradigma de tráfego aéreo como forma de atender sua crescente demanda, mantendo (ou melhorando) os atuais níveis de segurança. Porém, esta mudança de paradigma traz consigo novos desafios e necessidades, sobretudo, quanto à forma de se avaliar os sistemas resultantes. Em face destes novos desafios e problemas enfrentados, este trabalho propôs um método de avaliação de risco, constituído pela união dos métodos \"absoluto\" e \"relativo\" preconizados pela Organização da Aviação Civil Internacional (OACI), pelo emprego do formalismo das redes de Petri Fluidas e Estocásticas (RPFE) na modelagem dos sistemas, e pela comparação entre os valores de métricas de segurança estimados para o sistema avaliado e para um sistema legado. Este método foi aplicado para avaliar a segurança na mudança do atual paradigma de vigilância aérea, baseado em equipamentos Radar, para o paradigma de Vigilância Dependente Automática por Radiodifusão (ADS-B). Como conclusões, o método proposto mostrou-se promissor para avaliar a segurança de sistemas baseados nos atuais paradigmas de sistema críticos em segurança, especialmente o CNS/ATM, onde o formalismo das RPFE proporcionou modelar suas principais características, e a simulação por eventos discretos permitiu estimar as métricas desejadas. Além disso, a ADS-B mostrou-se uma aplicação viável para a vigilância no Sistema de Controle de Tráfego Aéreo, sendo capaz de reduzir o nível de exposição das aeronaves a eventos de perda de separação e, assim, melhorar os níveis de segurança do tráfego aéreo. / In last decades, the safety critical systems paradigm has changing to adapt itself to new necessities, such as costs reduction and productivity demand growth. In the Air Traffic System, those changes are ruled by CNS/ATM paradigm (Communication, Navigation, Surveillance / Air Traffic Management), based on new digital Technologies, mainly Satellites, applied to Communication, Surveillance, Navigation and Air Traffic Management. CNS/ATM intends to reduce the restrictions of current air traffic paradigm, enabling the growth of air traffic capacity without affecting current safety levels. However, this new paradigm brings together new challenges and needs, mainly related to safety assessment. In face of these new challenges, this work proposed a method of risk assessment constituted by the union of the \"absolute\" and \"relative\" assessment methods adopted by the International Civil Aviation Organization (ICAO), by modeling systems using Fluid Stochastic Petri Nets (FSPN) formalism, and by comparison between safety metrics obtained from proposed and legacy system simulations. This method was applied to assess a new concept of air traffic surveillance, named \"Automatic Dependent Surveillance - Broadcasting\" (ADS-B). As main conclusions, the proposed method was promising to assess system safety properties based on current safety critical system paradigm, especially the CNS/ATM, where FSPN formalism provided important modeling capabilities and discrete event simulation allowed estimating the desired safety metric. Besides, ADS-B has meaningfully reduced the separation losses risks and, therefore, it could be used to air traffic control surveillance system to improve capacity and/or safety levels of air traffic system.
5

A Computer Model to Predict Potential Wake Turbulence Encounters in the National Airspace

Fan, Zheng 13 February 2015 (has links)
With an increasing population of super heavy aircraft operating in the National Airspace System and with the introduction of NextGen technologies, the wake vortex problem has become more important for airport capacity and the en-route air traffic operations. The vortices generated by heavy and super heavy aircraft can generate potential hazards to other aircraft on nearby flight paths. Moreover, the design of new airport procedures needs to consider the interactions between aircraft in closer paths. New methods and models are required to examine these effects before new operations are conducted in the National Airspace System (NAS). Reducing wake vortex separations to safe levels between successive aircraft is essential for NextGen operations. One approach taken recently by ICAO and the FAA is to introduce a re-categorization (ReCat) of wake vortex separations to six groups from the existing five groups employed by the FAA in the United States. Reduced aircraft separations can increase capacity in the NAS with corresponding savings in delay times at busy airports. Future NextGen operations are likely to introduce smaller aircraft separations in the en-route and in the terminal area. Such operations would require better methods to identify potential wake hazards from reduced separation operations. This dissertation describes a model to identify potential wake encounters in the future NAS. The goal of the dissertation is to describe the Enhanced Wake Encounter Model (EWEM), a model that employs a detailed NASA-developed wake model to generate wake zones for different aircraft categories under different flight conditions that can be used with aircraft flight path data to identify potential wake encounters. The main contribution of this model is to gain an understanding of potential wake encounters under future NAS operations. / Ph. D.

Page generated in 0.0512 seconds