Spelling suggestions: "subject:"airborne laser canner"" "subject:"airborne laser 3dscanner""
1 |
Estimating forest structural characteristics with airborne lidar scanning and a near-real time profiling laser systemsZhao, Kaiguang 15 May 2009 (has links)
LiDAR (Light Detection and Ranging) directly measures canopy vertical
structures, and provides an effective remote sensing solution to accurate and spatiallyexplicit
mapping of forest characteristics, such as canopy height and Leaf Area Index.
However, many factors, such as large data volume and high costs for data acquisition,
precludes the operational and practical use of most currently available LiDARs for
frequent and large-scale mapping. At the same time, a growing need is arising for realtime
remote sensing platforms, e.g., to provide timely information for urgent
applications. This study aims to develop an airborne profiling LiDAR system, featured
with on-the-fly data processing, for near real- or real- time forest inventory. The
development of such a system involves implementing the on-board data processing and
analysis as well as building useful regression-based models to relate LiDAR
measurements with forest biophysical parameters.
This work established a paradigm for an on-the-fly airborne profiling LiDAR
system to inventory regional forest resources in real- or near real- time. The system was
developed based on an existing portable airborne laser system (PALS) that has been
previously assembled at NASA by Dr. Ross Nelson. Key issues in automating PALS as
an on-the-fly system were addressed, including the design of an archetype for the system
workflow, the development of efficient and robust algorithms for automatic data
processing and analysis, the development of effective regression models to predict forest
biophysical parameters from LiDAR measurements, and the implementation of an
integrated software package to incorporate all the above development. This work exploited the untouched potential of airborne laser profilers for realtime
forest inventory, and therefore, documented an initial step toward developing
airborne-laser-based, on-the-fly, real-time, forest inventory systems. Results from this
work demonstrated the utility and effectiveness of airborne scanning or profiling laser
systems for remotely measuring various forest structural attributes at a range of scales,
i.e., from individual tree, plot, stand and up to regional levels. The system not only
provides a regional assessment tool, one that can be used to repeatedly, remotely
measure hundreds or thousands of square kilometers with little/no analyst interaction or
interpretation, but also serves as a paradigm for future efforts in building more advanced
airborne laser systems such as real-time laser scanners.
|
2 |
Application of Airborne Scanner - Aerial NavigationCampbell, Jacob L. 12 September 2006 (has links)
No description available.
|
3 |
Investigation of Dual Airborne Laser Scanners for Detection and State Estimation of Mobile Obstacles in an Aircraft External Hazard MonitorSmearcheck, Mark A. 08 August 2008 (has links)
No description available.
|
4 |
Airborne Laser Scanner Aided Inertial for Terrain Referenced Navigation in Unknown EnvironmentsVadlamani, Ananth Kalyan 16 April 2010 (has links)
No description available.
|
5 |
An Approach to 3D Building Model Reconstruction from Airborne Laser Scanner Data Using Parameter Space Analysis and Fusion of Primitives / Eine Methode zur Rekonstruktion von 3D Gebäudemodellen aus Flugzeuglaserscannerdaten unter der Verwendung von Parameterräumen und der Fusion von PrimitivenHofmann, Alexandra 05 August 2005 (has links) (PDF)
Within this work an approach was developed, which utilises airborne laser scanner data in order to generate 3D building models. These 3D building models may be used for technical and environmental planning. The approach has to follow certain requirements such as working automatically and robust and being flexible in use but still practicable. The approach starts with small point clouds containing one building at the time extracted from laser scanner data set by applying a pre-segmentation scheme. The laser scanner point cloud of each building is analysed separately. A 2.5D-Delaunay triangle mesh structure (TIN) is calculated into the laser scanner point cloud. For each triangle the orientation parameters in space (orientation, slope and perpendicular distance to the barycentre of the laser scanner point cloud) are determined and mapped into a parameter space. As buildings are composed of planar features, primitives, triangles representing these features should group in parameter space. A cluster analysis technique is utilised to find and outline these groups/clusters. The clusters found in parameter space represent plane objects in object space. Grouping adjacent triangles in object space - which represent points in parameter space - enables the interpolation of planes in the ALS points that form the triangles. In each cluster point group a plane in object space is interpolated. All planes derived from the data set are intersected with their appropriate neighbours. From this, a roof topology is established, which describes the shape of the roof. This ensures that each plane has knowledge on its direct adjacent neighbours. Walls are added to the intersected roof planes and the virtual 3D building model is presented in a file written in VRML (Virtual Reality Macro Language). Besides developing the 3D building model reconstruction scheme, this research focuses on the geometric reconstruction and the derivation of attributes of 3D building models. The developed method was tested on different data sets obtained from different laser scanner systems. This study will also show, which potential and limits the developed method has when applied to these different data sets. / In der vorliegenden Arbeit wird eine neue Methode zur automatischen Rekonstruktion von 3D Gebäudemodellen aus Flugzeuglaserscannerdaten vorgestellt. Diese 3D Gebäudemodelle können in technischer und landschaftsplanerischer Hinsicht genutzt werden. Bezüglich der zu entwickelnden Methode wurden Regelungen und Bedingungen erstellt, die eine voll automatische und robuste Arbeitsweise sowie eine flexible und praktikable Nutzung gewährleisten sollten. Die entwickelte Methode verwendet Punktwolken, welche mittels einer Vorsegmentierung aus dem gesamten Laserscannerdatensatz extrahiert wurden und jeweils nur ein Gebäude beinhalten. Diese Laserscannerdatenpunktwolken werden separat analysiert. Eine 2,5D-Delaunay-Dreiecksvermaschung (TIN) wird in jede Punktwolke gerechnet. Für jedes Dreieck dieser Vermaschung werden die Lageparameter im Raum (Ausrichtung, Neigungsgrad und senkrechter Abstand der Ebene des Dreiecks zum Schwerpunkt der Punktwolke) bestimmt und in einen Parameterraum aufgetragen. Im Parameterraum bilden diejenigen Dreiecke Gruppen, welche sich im Objektraum auf ebenen Flächen befinden. Mit der Annahme, dass sich ein Gebäude aus ebenen Flächen zusammensetzt, dient die Identifizierung von Clustern im Parameterraum der Detektierung dieser Flächen. Um diese Gruppen/Cluster aufzufinden wurde eine Clusteranalysetechnik genutzt. Über die detektierten Cluster können jene Laserscannerpunkte im Objektraum bestimmt werden, die eine Dachfläche formen. In die Laserscannerpunkte der somit gefundenen Dachflächen werden Ebenen interpoliert. Alle abgeleiteten Ebenen gehen in den entwickelten Rekonstruktionsalgorithmus ein, der eine Topologie zwischen den einzelnen Ebenen aufbaut. Anhand dieser Topologie erhalten die Ebenen ?Kenntnis? über ihre jeweiligen Nachbarn und können miteinander verschnitten werden. Der fertigen Dachgestalt werden Wände zugefügt und das komplette 3D Gebäudemodell wird mittels VRML (Virtual Reality Macro Language) visualisiert. Diese Studie bezieht sich neben der Entwicklung eines Schemas zu automatischen Gebäuderekonstruktion auch auf die Ableitung von Attributen der 3D Gebäudemodellen. Die entwickelte Methode wurde an verschiedenen Flugzeuglaserscannerdatensätzen getestet. Es wird gezeigt, welche Potentiale und Grenzen die entwickelte Methode bei der Bearbeitung dieser verschiedenen Laserscannerdatensätze hat.
|
6 |
An Approach to 3D Building Model Reconstruction from Airborne Laser Scanner Data Using Parameter Space Analysis and Fusion of PrimitivesHofmann, Alexandra 23 June 2005 (has links)
Within this work an approach was developed, which utilises airborne laser scanner data in order to generate 3D building models. These 3D building models may be used for technical and environmental planning. The approach has to follow certain requirements such as working automatically and robust and being flexible in use but still practicable. The approach starts with small point clouds containing one building at the time extracted from laser scanner data set by applying a pre-segmentation scheme. The laser scanner point cloud of each building is analysed separately. A 2.5D-Delaunay triangle mesh structure (TIN) is calculated into the laser scanner point cloud. For each triangle the orientation parameters in space (orientation, slope and perpendicular distance to the barycentre of the laser scanner point cloud) are determined and mapped into a parameter space. As buildings are composed of planar features, primitives, triangles representing these features should group in parameter space. A cluster analysis technique is utilised to find and outline these groups/clusters. The clusters found in parameter space represent plane objects in object space. Grouping adjacent triangles in object space - which represent points in parameter space - enables the interpolation of planes in the ALS points that form the triangles. In each cluster point group a plane in object space is interpolated. All planes derived from the data set are intersected with their appropriate neighbours. From this, a roof topology is established, which describes the shape of the roof. This ensures that each plane has knowledge on its direct adjacent neighbours. Walls are added to the intersected roof planes and the virtual 3D building model is presented in a file written in VRML (Virtual Reality Macro Language). Besides developing the 3D building model reconstruction scheme, this research focuses on the geometric reconstruction and the derivation of attributes of 3D building models. The developed method was tested on different data sets obtained from different laser scanner systems. This study will also show, which potential and limits the developed method has when applied to these different data sets. / In der vorliegenden Arbeit wird eine neue Methode zur automatischen Rekonstruktion von 3D Gebäudemodellen aus Flugzeuglaserscannerdaten vorgestellt. Diese 3D Gebäudemodelle können in technischer und landschaftsplanerischer Hinsicht genutzt werden. Bezüglich der zu entwickelnden Methode wurden Regelungen und Bedingungen erstellt, die eine voll automatische und robuste Arbeitsweise sowie eine flexible und praktikable Nutzung gewährleisten sollten. Die entwickelte Methode verwendet Punktwolken, welche mittels einer Vorsegmentierung aus dem gesamten Laserscannerdatensatz extrahiert wurden und jeweils nur ein Gebäude beinhalten. Diese Laserscannerdatenpunktwolken werden separat analysiert. Eine 2,5D-Delaunay-Dreiecksvermaschung (TIN) wird in jede Punktwolke gerechnet. Für jedes Dreieck dieser Vermaschung werden die Lageparameter im Raum (Ausrichtung, Neigungsgrad und senkrechter Abstand der Ebene des Dreiecks zum Schwerpunkt der Punktwolke) bestimmt und in einen Parameterraum aufgetragen. Im Parameterraum bilden diejenigen Dreiecke Gruppen, welche sich im Objektraum auf ebenen Flächen befinden. Mit der Annahme, dass sich ein Gebäude aus ebenen Flächen zusammensetzt, dient die Identifizierung von Clustern im Parameterraum der Detektierung dieser Flächen. Um diese Gruppen/Cluster aufzufinden wurde eine Clusteranalysetechnik genutzt. Über die detektierten Cluster können jene Laserscannerpunkte im Objektraum bestimmt werden, die eine Dachfläche formen. In die Laserscannerpunkte der somit gefundenen Dachflächen werden Ebenen interpoliert. Alle abgeleiteten Ebenen gehen in den entwickelten Rekonstruktionsalgorithmus ein, der eine Topologie zwischen den einzelnen Ebenen aufbaut. Anhand dieser Topologie erhalten die Ebenen ?Kenntnis? über ihre jeweiligen Nachbarn und können miteinander verschnitten werden. Der fertigen Dachgestalt werden Wände zugefügt und das komplette 3D Gebäudemodell wird mittels VRML (Virtual Reality Macro Language) visualisiert. Diese Studie bezieht sich neben der Entwicklung eines Schemas zu automatischen Gebäuderekonstruktion auch auf die Ableitung von Attributen der 3D Gebäudemodellen. Die entwickelte Methode wurde an verschiedenen Flugzeuglaserscannerdatensätzen getestet. Es wird gezeigt, welche Potentiale und Grenzen die entwickelte Methode bei der Bearbeitung dieser verschiedenen Laserscannerdatensätze hat.
|
Page generated in 0.0885 seconds