• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aerodynamic testing of a circular planform concept aircraft

Recktenwald, Bryan David. Ahmed, Anwar, January 2008 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2008. / Abstract. Includes bibliographical references (p. 60-61).
2

Dynamic stability and handling qualities of small unmanned-aerial-vehicles /

Foster, Tyler M. January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2005. / Includes bibliographical references (p. 97-98).
3

Flying and handling qualities of a fly-by-wire blended-wing-body civil transport aircraft

de Castro, Helena V. 12 1900 (has links)
The blended-wing-body (BWB) configuration appears as a promising contender for the next generation of large transport aircraft. The idea of blending the wing with the fuselage and eliminating the tail is not new, it has long been known that tailless aircraft can suffer from stability and control problems that must be addressed early in the design. This thesis is concerned with identifying and then evaluating the flight dynamics, stability, flight controls and handling qualities of a generic BWB large transport aircraft concept. Longitudinal and lateral-directional static and dynamic stability analysis using aerodynamic data representative of different BWB configurations enabled a better understanding of the BWB aircraft characteristics and identification of the mechanisms that influence its behaviour. The static stability studies revealed that there is limited control power both for the longitudinal and lateral-directional motion. The solution for the longitudinal problem is to limit the static margins to small values around the neutral point, and even to use negative static margins. However, for the directional control problem the solution is to investigate alternative ways of generating directional control power. Additional investigation uncovered dynamic instability due to the low and negative longitudinal and directional static stability. Furthermore, adverse roll and yaw responses were found to aileron inputs. The implementation of a pitch rate command/attitude hold flight control system (FCS) improved the longitudinal basic BWB characteristics to satisfactory levels, or Level 1, flying and handling qualities (FHQ). Although the lateral-directional command and stability FCS also improved the BWB flying and handling qualities it was demonstrated that Level 1 was not achieved for all flight conditions due to limited directional control power. The possibility to use the conventional FHQs criteria and requirements for FCS design and FHQs assessment on BWB configurations was also investigated. Hence, a limited set of simulation trials were undertaken using an augmented BWB configuration. The longitudinal Bandwidth/Phase delay/Gibson dropback criteria, as suggested by the military standards, together with the Generic Control Anticipation Parameter (GCAP) proved possible to use to assess flying and handling qualities of BWB aircraft. For the lateral-directional motion the MIL-F-8785C criteria were used. Although it is possible to assess the FHQ of BWB configuartions using these criteria, more research is recommended specifically on the lateral-directional FHQs criteria and requirements of highly augmented large transport aircraft.
4

Robustness Analysis of Simultaneous Stabilization and its Applications in Flight Control

Saeedi, Yasaman 25 August 2011 (has links)
Simultaneous stabilization is an important problem in the design of robust controllers. It is the problem of designing a single feedback controller which will simultaneously stabilize every member of a finite collection of liner time-invariant systems. This provides simplicity and reliability which is desirable in aerospace applications. It can be used as a back-up control system in sophisticated airplanes, or an inexpensive primary one for small aircraft. In this work the robustness of the simultaneous stabilization problem, known as the Robust Simultaneous Stabilization (RSS) problem, is addressed. First, an optimization methodology for finding a solution to the Simultaneous Stabilization (SS) problem is proposed. Next, in order to provide simultaneous stability while maximizing the stability robustness bounds, a multiple-robustness optimization design methodology for the RSS problem is presented. The two proposed design methodologies are then compared in terms of robustness of the designed controller.
5

Robustness Analysis of Simultaneous Stabilization and its Applications in Flight Control

Saeedi, Yasaman 25 August 2011 (has links)
Simultaneous stabilization is an important problem in the design of robust controllers. It is the problem of designing a single feedback controller which will simultaneously stabilize every member of a finite collection of liner time-invariant systems. This provides simplicity and reliability which is desirable in aerospace applications. It can be used as a back-up control system in sophisticated airplanes, or an inexpensive primary one for small aircraft. In this work the robustness of the simultaneous stabilization problem, known as the Robust Simultaneous Stabilization (RSS) problem, is addressed. First, an optimization methodology for finding a solution to the Simultaneous Stabilization (SS) problem is proposed. Next, in order to provide simultaneous stability while maximizing the stability robustness bounds, a multiple-robustness optimization design methodology for the RSS problem is presented. The two proposed design methodologies are then compared in terms of robustness of the designed controller.
6

Flying and handling qualities of a fly-by-wire blended-wing-body civil transport aircraft

de Castro, Helena V. January 2003 (has links)
The blended-wing-body (BWB) configuration appears as a promising contender for the next generation of large transport aircraft. The idea of blending the wing with the fuselage and eliminating the tail is not new, it has long been known that tailless aircraft can suffer from stability and control problems that must be addressed early in the design. This thesis is concerned with identifying and then evaluating the flight dynamics, stability, flight controls and handling qualities of a generic BWB large transport aircraft concept. Longitudinal and lateral-directional static and dynamic stability analysis using aerodynamic data representative of different BWB configurations enabled a better understanding of the BWB aircraft characteristics and identification of the mechanisms that influence its behaviour. The static stability studies revealed that there is limited control power both for the longitudinal and lateral-directional motion. The solution for the longitudinal problem is to limit the static margins to small values around the neutral point, and even to use negative static margins. However, for the directional control problem the solution is to investigate alternative ways of generating directional control power. Additional investigation uncovered dynamic instability due to the low and negative longitudinal and directional static stability. Furthermore, adverse roll and yaw responses were found to aileron inputs. The implementation of a pitch rate command/attitude hold flight control system (FCS) improved the longitudinal basic BWB characteristics to satisfactory levels, or Level 1, flying and handling qualities (FHQ). Although the lateral-directional command and stability FCS also improved the BWB flying and handling qualities it was demonstrated that Level 1 was not achieved for all flight conditions due to limited directional control power. The possibility to use the conventional FHQs criteria and requirements for FCS design and FHQs assessment on BWB configurations was also investigated. Hence, a limited set of simulation trials were undertaken using an augmented BWB configuration. The longitudinal Bandwidth/Phase delay/Gibson dropback criteria, as suggested by the military standards, together with the Generic Control Anticipation Parameter (GCAP) proved possible to use to assess flying and handling qualities of BWB aircraft. For the lateral-directional motion the MIL-F-8785C criteria were used. Although it is possible to assess the FHQ of BWB configuartions using these criteria, more research is recommended specifically on the lateral-directional FHQs criteria and requirements of highly augmented large transport aircraft.
7

A Computational and Design Characterization for the Flowfield behind a C-130 during an Unmanned Aerial Vehicle Docking

Robertson, Cole D. January 2019 (has links)
No description available.

Page generated in 1.9385 seconds