• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation des cendres des boues de désencrage et ses applications potentielles dans le béton / Characteristics of wastepaper sludge ash and its potential applications in concrete

Xie, Ailing January 2009 (has links)
The rapid deterioration of the global environment forces people to increasingly take into consideration. Nowadays, concrete is the most extensively-used construction material in the world. Cement, the dominant material for manufacturing concrete, has been largely used in the past few decades. It has also been generally considered as an environmentally hazardous material, mainly due to CO2 emissions during the production process. Thus, many industrial by-products have been used to partially substitute cement in order to generate more economic and durable concrete. Among these by-products, fly ash generated during combustion of coal has been successfully used in concrete for many years. Unlike traditional fly ash, a new type of ash may also be used. It is obtained by combustion of de-inking sludge, bark and residues of woods in a fluidized-bed system from Brompton Mill located near Sherbrooke, Canada. However, the properties and the applications of this new by-product are not well known. An investigation was carried out to characterize this new material and examine its performance as an alternative material in the production of concrete. Firstly, the chemical, physical, mineralogical, and morphological characteristics of WSA were analyzed and were compared with traditional ash. In addition, the rheological properties of pastes and mortars mixed with WSA were evaluated by tests such as the calorimeter, mini-slump, marsh cone, and compressive strength of mortar cubes. In addition, the optimum ratio of cement replaced by WSA was examined by the compressive strength of concrete at the age of 1, 7, 28 and 91 days. Herein, two different water-to-binder ratios are considered: 0.4 and 0.55. Finally, the comprehensive properties of WSA concrete applying to the optimum ratio was carried out in different aspects such as fresh, mechanical properties, volume-change, and durability.The results show that it is possible to use WSA as a new cementitious material in concrete. According to the experimental results, a high-range water-reducing agent was required, even at a higher water-to-binder ratio (WSA showed a high degree of water demand). It study also revealed that WSA concrete had low permeability, and resisted freezing and thawing compared to the control mixture. In addition, the high CaO content in WSA substantially increased the expansion of concrete, early in the process. This greatly compensated the autogenous shrinkage that was developed in concrete with a low water-to-binder ratio. However, WSA is not recommended for use in environments containing a high quantity of sulphate, because its higher lime phase may cause the damage to constructions.
2

Valorisation de la poudre de verre dans le béton autoplaçant

Chekireb, Sihem January 2015 (has links)
Les bétons autoplaçants (BAP) représentent une nouvelle technologie révolutionnaire dans le domaine de la construction et du génie civil. L’emploi de ce type de béton innovant ne cesse de gagner du terrain et se généralise à diverses applications grâce à leurs multiples avantages techniques et socio-économiques. Cependant, la formulation des BAP est relativement complexe et coûteuse par rapport à un béton conventionnel vibré. Une forte teneur en liant et un dosage adéquat en adjuvants chimiques sont requis afin d’assurer les propriétés de fluidité, d’homogénéité et de stabilité de ces nouveaux bétons. Par ailleurs, l’utilisation du verre mixte au Québec génère beaucoup de déchets polluants et nuisibles à l’environnement. Dans ce contexte, il semblerait avantageux de recycler ce verre en remplacement partiel du ciment. Cela permet de diminuer le prix de revient du BAP, de limiter l’utilisation des ressources naturelles et d’atténuer la production de gaz à effet de serre. L’objectif principal de cette étude est le développement d’un BAP économique et écologique contenant la poudre de verre (PV) comme ajout cimentaire. L’effet de la PV sur la rhéologie des pâtes de ciment et sur les performances des BAP à l’état frais et durci est évalué. Tous les mélanges de pâtes et de BAP sont préparés avec un rapport E/L de 0,42. Différents pourcentages de remplacement du ciment par la PV, allant jusqu'à 40% en masse de liant total, sont étudiés dans des matrices binaires et ternaires. Dans le cas des systèmes ternaires, la fumée de silice est utilisée à 3% en masse de liant. D'autre part, la cendre volante classe F (CV) et le laitier de haut fourneau (L) sont utilisés à des fins de comparaison. Les résultats des essais montrent que la PV réduit la demande en superplastifiant en comparaison avec la CV et L. En outre l’utilisation de la PV n’affecte pas la viscosité plastique, mais diminue significativement le seuil de cisaillement des pâtes étudiées. D’autres parts, le remplacement partiel du ciment par la PV améliore l’ouvrabilité, la rhéologie et la stabilité des BAP binaires et ternaires sans l’emploi d’un agent de viscosité. Les propriétés mécaniques ainsi que la résistance à la pénétration des ions chlorures et la résistance au gel-dégel des BAP incorporant la PV sont comparables voir meilleures que celle du témoin dépendamment du pourcentage de remplacement. On peut dire qu’il est possible de produire un BAP incorporant la poudre de verre comme ajout cimentaire alternatif local dans une optique de développement durable.
3

Bétons durables à base de cendres d'écorces de riz

Wilson, William January 2012 (has links)
De nos jours, le développement durable est devenu une nécessité dans l'ensemble des sphères d'activité de notre monde, et particulièrement dans le domaine du béton. En effet, le développement des sociétés passe inévitablement par l'augmentation des infrastructures; le béton est le matériau principalement utilisé et son empreinte environnementale considérable gagnerait à être diminuée. L'industrie et la recherche sont très actives à ce niveau et la science des bétons durables est en pleine expansion. Dans ce contexte, une piste de solution est l'utilisation de résidus industriels ou agricoles comme ajouts cimentaires, ce qui permet de remplacer partiellement le ciment très polluant, tout en produisant des bétons avec une meilleure durabilité. Les cendres d'écorce de riz (RHA) présentent ainsi un potentiel cimentaire similaire aux meilleurs ajouts cimentaires actuellement utilisés, mais les applications concrètes de ce nouveau matériau demeurent peu développées à ce jour. Le présent projet a donc été conçu afin d'illustrer le potentiel des RHA d'une part dans les pays industrialisés pour améliorer la durabilité des bétons hautes performances (BHP) et pour améliorer les propriétés à l'état frais des bétons autoplaçants (BAP); et d'autre part, dans les pays en développement pour démocratiser les bétons durables produits avec des technologies adaptées aux réalités locales. Une première phase réalisée avec des RHA de haute qualité (RHAI) a ainsi été consacrée aux applications en pays industrialisés. La caractérisation des RHAI a indiqué une composition de 90% de silice amorphe, des particules légèrement plus grossières que le ciment, et une microstructure très poreuse et absorbante. Afin de pallier à cette absorption d'eau, l'optimisation du type de superplastifiant a permis de déterminer que l'utilisation du Plastol 5000 ou de l'Adva 405 avec les RHAI favorise un équilibre optimal entre dispersion initiale, rétention d'affaissement et résistances mécaniques. L'optimisation du dosage en RHAI a démontré que 10 ou 15% en remplacement du ciment améliore significativement la durabilité, que les résistances mécaniques sont peu affectées par le dosage en RHAI, et que 20% (ou plus) de RHAI entraine des problèmes de maniabilité associés à une consistance rhéo-épaississante. Suite à ces optimisations, le bon potentiel des RHAI pour améliorer la durabilité des BHP a été déterminé en comparaison avec la fumée de silice (FS) et le métakaolin : le retrait endogène a été diminué par un effet de cure interne, les perméabilités aux chlorures ont été diminuées au même niveau que par la FS, et la résistance à l'écaillage a été améliorée possiblement par diminution du ressuage de surface. Finalement, l'augmentation de la viscosité par les RHAI a été utilisée avantageusement dans les BAP ou un dosage de 10% a permis d'éviter la ségrégation sans utiliser d'adjuvant modificateur de viscosité très couteux. Une deuxième phase a consisté à optimiser l'utilisation sur bétons de RHA produites avec un four à écorces de riz artisanal fabriqué selon un modèle actuellement utilisé au Burkina Faso (RHAG). Ces RHAG ont été broyées à la même granulométrie que les RHAI et des performances mécaniques similaires ont été obtenues. Une méthode de caractérisation simplifiée adaptée aux réalités du terrain a aussi été développée : elle permet d'optimiser le broyage en limitant les outils nécessaires à un tamis de 45 tm et à une balance. Un béton pour dalle a par la suite été développé à partir d'une recette typique de béton du Burkina Faso : ce béton avec RHAG a développé des résistances similaires à un contrôle, tout en permettant des économies de 23% sur le ciment. En conclusion, ce projet a réussi à illustrer le potentiel des RHA pour favoriser le développement durable dans différents types de bétons, dans différents contextes et avec des méthodes adaptées aux technologies disponibles. Suite à ce bref résumé, je vous invite fortement à poursuivre votre lecture pour en apprendre encore davantage.
4

Chemo-mechanical characterization of microstructure phases in cementitious systems by a novel NI-QEDS technique / Caractérisation chimico-mécanique des phases microstructurales de systèmes cimentaires avec la technique novatrice NI-QEDS

Wilson, William January 2017 (has links)
Face à la finitude des ressources de la terre et de sa capacité d’absorption de la pollution, le développement d’écobétons pour un futur industrialisé durable représente un défi majeur de la science du béton moderne. En raison de sa nature hétérogène complexe, les propriétés macroscopiques du béton dépendent fortement des constituants de sa microstructure (ex. silicates de calcium hydratés [C–S–H], Portlandite, inclusions anhydres, porosité, agrégats, etc.). De plus, la nécessité d’une exploitation rapide et optimale des matériaux cimentaires émergents dans les applications industrielles demande de nos jours une meilleure compréhension de leurs particularités chimico-mécaniques à l’échelle micrométrique. Cette thèse vise à développer une méthode de pointe de couplage de la nanoindentation et de la spectroscopie quantitative aux rayons X à dispersion d'énergie (NI-QEDS), puis à fournir une caractérisation chimico-mécanique originale des phases microstructurales présentes dans les matrices réelles de ciments mélangés. La combinaison d’analyses NI-QEDS statistiques et déterministes a ainsi permis d’élargir la compréhension des systèmes avec ciment Portland et ajouts cimentaires (ACs) conventionnels ou alternatifs. Plus spécifiquement, l’étude des C–(A)–S–H (C–S–H incluant l’aluminium ou non) dans différents systèmes à base de ciments mélangés a montré des compositions différentes pour cet hydrate (variations dans les taux de Ca, Si, Al, S et Mg), mais ses propriétés mécaniques n’ont pas été significativement affectées par l’incorporation des ACs dans des dosages typiques. Les résultats présentés ont aussi démontré le rôle important des autres phases imbriquées dans la matrice de C–(A)–S–H, soit les inclusions anhydres dures (ex. le clinker et les ACs) et les autres hydrates tels que la Portlandite et les hydrates riches en aluminium (ex. les carboaluminates) avec des propriétés mécaniques plus élevées que celles des C–(A)–S–H. La thèse est basée sur cinq articles couvrant : (1) une analyse NI-EDS de systèmes incorporant des volumes élevés de pouzzolanes naturelles; (2) le développement de la méthode NI-QEDS; des analyses statistiques NI-QEDS (3) de systèmes avec cendres volantes et laitier, et (4) d’un système combinant ciment, calcaire et argile calcinée; et (5) une exploration déterministe NI-QEDS de systèmes conventionnels et alternatifs incorporant la poudre de verre, le métakaolin, le laitier ou la cendre volante. Finalement, en plus d’avancer les derniers modèles et méthodes micromécaniques, l’outil développé a fourni une perception chimico-mécanique originale des phases microstructurales et de leur arrangement. Le dévoilement de la signature chimico-mécanique de ces pâtes de ciments mélangés particulièrement complexes offre un savoir unique pour l’ingénierie des bétons de demain. / Abstract : Facing the limitedness of the earth’s resources and pollution absorption capacity, the development of eco-concrete for a sustainable industrialized future is one of the major challenges of modern concrete science. Due to its complex heterogeneous nature, the macro-scale properties of concrete strongly depend on the microstructure constituents (e.g., calcium-silicate-hydrates [C–S–H], Portlandite, anhydrous inclusions, porosity, aggregates, etc.). Moreover, the need for rapid and optimal exploitation of emerging binding materials in industrial applications urges today a better understanding of their chemo-mechanical features at the micrometer scale. This thesis aims at developing a state-of-the-art method coupling NanoIndentation and Quantitative Energy-Dispersive Spectroscopy (NI-QEDS), and providing an original chemo-mechanical characterization of the microstructure phases in highly heterogeneous matrices of real blended-cement pastes. The combination of statistical and deterministic NI-QEDS analysis approaches opened new research horizons in the understanding of Portland-cement systems incorporating conventional and alternative supplementary cementitious materials (SCMs). More specifically, the investigations of C–(A)–S–H (C–S–H including aluminum or not) in different blended-cement systems showed variable compositions for this hydrate (i.e., Ca, Si, Al, S and Mg contents), but the mechanical properties were not significantly affected by the incorporation of SCMs in typical dosages. The presented results also showed the important role of the other phases embedded in the C–(A)–S–H matrix, i.e., hard anhydrous inclusions (e.g., clinker and SCMs) and other hydrates such as Portlandite and Al-rich hydrates (e.g., carboaluminates) with mechanical properties higher than those of the C–(A)–S–H. The thesis is based on five articles focusing on: (1) the NI-EDS investigation of high-volume natural pozzolan systems; (2) the development of the NI-QEDS method; the statistical NI-QEDS analyses of (3) fly ash and slag blended-cement systems and of (4) a limestone-calcined-clay system; and (5) the deterministic NI-QEDS exploration of alternative and conventional systems incorporating glass powder, metakaolin, slag or fly ash. Finally, the developed tool not only advanced the latest micromechanical methods and models, but also provided original chemo-mechanical insights on the microstructure phases and their arrangement. Unveiling the chemo-mechanical signature of these highly-complex blended cement pastes further provided unique knowledge for engineering concretes for tomorrow.

Page generated in 0.0719 seconds