• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The sorption of uranium(VI) and neptunium(V) onto surfaces of selected metal oxides and alumosilicates studied by in situ vibrational spectroscopy

Müller, K. 22 September 2010 (has links) (PDF)
The migration behavior of actinides and other radioactive contaminants in the environment is controlled by prominent molecular phenomena such as hydrolysis and complexation reactions in aqueous solutions as well as the diffusion and sorption onto minerals present along groundwater flow paths. These reactions significantly influence the mobility and bioavailability of the metal ions in the environment, in particular at liquid-solid interfaces. Hence, for the assessment of migration processes the knowledge of the mechanisms occurring at interfaces is crucial. The required structural information can be obtained using various spectroscopic techniques. In the present study, the speciation of uranium(VI) and neptunium(V) at environmentally relevant mineral – water interfaces of oxides of titania, alumina, silica, zinc, and alumosilicates has been investigated by the application of attenuated total reflection Fouriertransform infrared (ATR FT-IR) spectroscopy. Moreover, the distribution of the hydrolysis products in micromolar aqueous solutions of U(VI) and Np(V/VI) at ambient atmosphere has been characterized for the first time, by a combination of ATR FT-IR spectroscopy, near infrared (NIR) absorption spectroscopy, and speciation modeling applying updated thermodynamic databases. From the infrared spectra, a significant change of the U(VI) speciation is derived upon lowering the U(VI) concentration from the milli- to the micromolar range, strongly suggesting the dominance of monomeric U(VI) hydrolysis products in the micromolar solutions. In contradiction to the predicted speciation, monomeric hydroxo species are already present at pH ≥ 2.5 and become dominant at pH 3. At higher pH levels (> 6), a complex speciation is evidenced including carbonate containing complexes. For the first time, spectroscopic results of Np(VI) hydrolysis reactions are provided in the submillimolar concentration range and at pH values up to 5.3, and they are comparatively discussed with U(VI). For both actinides, the formation of similar species is suggested at pH ≤ 4, whereas at higher pH, the infrared spectra evidence structurally different species. At pH 5, the formation of a carbonate-containing dimeric complex, that is (NpO2)2CO3(OH)3^-, is strongly suggested, whereas carbonate complexation occurs only under more alkaline conditions in the U(VI) system. The results from the experiments of the sorption processes clearly demonstrate the formation of stable U(VI) surface complexes at all investigated mineral phases. This includes several metal oxides, namely TiO2, Al2O3, and SiO2, serving as model systems for the elucidation of more complex mineral systems, and several alumosilicates, such as kaolinite, muscovite and biotite. From a multiplicity of in situ experiments, the impact of sorbent characteristics and variations in the aqueous U(VI) system on the sorption processes was considered. A preferential formation of an inner-sphere complex is derived from the spectra of the TiO2 and SiO2 phases. In addition, since the in situ FT-IR experiments provide an online monitoring of the absorption changes of the sorption processes, the course of the formation of the U(VI) surface complexes can be observed spectroscopically. It is shown that after prolonged sorption time on TiO2, resulting in a highly covered surface, outer-sphere complexation predominates the sorption processes. The prevailing crystallographic modification, namely anatase and rutile, does not significantly contribute to the spectra, whereas surface specific parameters, e.g. surface area or porosity are important. A significant different surface complexation is observed for Al2O3. The formation of innerspheric species is assumed at low U(VI) surface coverage which is fostered at low pH, high ionic strength and short contact times. At proceeded sorption the surface complexation changes. From the spectra, an outer-spheric coordination followed by surface precipitation or polymerization is deduced. Moreover, in contrast to TiO2, the appearance of ternary U(VI) carbonate complexes on the γ-Al2O3 surface is suggested. The first results of the surface reactions on more complex, naturally occurring minerals (kaolinite, muscovite and biotite) show the formation of U(VI) inner-sphere sorption complexes. These findings are supported by the spectral information of the metal oxide surfaces. In this work, first spectroscopic results from sorption of aqueous Np(V) on solid mineral phases are provided. It is shown that stable inner-sphere surface species of NpO2 ^+ are formed on TiO2. Outer-sphere complexation is found to play a minor role due to the pH independence of the sorption species throughout the pH range 4 – 7.6. The comparative spectroscopic experiments of Np(V) sorption onto TiO2, SiO2, and ZnO indicate structurally similar bidentate surface complexes. The multiplicity of IR spectroscopic experiments carried out within this study yields a profound collection of spectroscopic data which will be used as references for future investigations of more complex sorption systems in aqueous solution. Furthermore, from a methodological point of view, this study comprehensively extends the application of ATR FT-IR spectroscopic experiments to a wide range in the field of radioecology. The results obtained in this work contribute to a better understanding of the geochemical interactions of actinides, in particular U(VI) and Np(V/VI), in the environment. Consequently, more reliable predictions of actinides migration which are essential for the safety assessment of nuclear waste repositories can be performed.
2

Investigation into the Formation of Nanoparticles of Tetravalent Neptunium in Slightly Alkaline Aqueous Solution

Husar, Richard 25 August 2015 (has links) (PDF)
Considering the worldwide growing discharge of minor actinides and the current need for geological disposal facilities for radioactive waste, this work provides a contribution to the safety case concerning Np transport if it would be released from deep repository sites and moving from alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed to be immobile in aqueous environment due to the low solubility solution of Np(IV). For tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous Np(IV) silica colloids under environmentally relevant conditions. The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO3)5]6-) induces the intrinsic formation of nanocrystalline NpO2 in the solution phase. The resulting irregularly shaped nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type structure (space group ). The NCs tend to agglomerate under ambient conditions due to the weakly charged hydrodynamic surface at neutral pH (zetapotential ~0 mV). The formation of micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent precipitation cause immobilization of the major amount of Np(IV) in the Np carbonate system. Agglomeration of NpO2 nanocrystals in dependence on time was indicated by PCS and UV-vis absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 742 nm. Hitherto, unknown polynuclear species as intermediate species of NpO2 nanocrystal formation were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides. Intrinsic formation of NpO2 (fcc) nanocrystals under ambient environmental conditions is prevented by admixing silicic acid: amorphous Np(IV) silica colloids are formed when silicate is present in carbonate solution. Herein, the initial molar ratio of Si to Np in solution lead to the formation of Np(IV) silica particles of different composition and size where Si content determines the structure and stability of resulting colloids. Implications for different electronic structures of Np(IV) in dependence on Si content in the solid phase are given by the shift of the absorption maximum at 742 nm characteristic for Np(IV) colloids, silica excess of 5 times the magnitude of Si to Np reveal a redshift up to 6 nm in the colloidal UV-vis spectrum. Precipitation of Np(IV) particles in the ternary system results in a different coordination sphere of Np(IV) compared to the binary system, and the incorporation of Si into internal structure of Np(IV) silica colloids in coffinite-like structure is confirmed by EXAFS. TEM confirms different kinds of particle morphologies in dependence on the silica content. Silica-poor systems reveal porous particles in the micron-range which consist of irregular cross-linked hydrolyzed Np(IV) silica compartments with pores <15 nm. In contrast, long-term stabilized and silica-enriched systems are characterized by isolated particles with an average particle size of 45 nm. Agglomerates of such isolated Np(IV) silica particles appear as consolidated amorphous solids with a densely closed surface and exhibit no internal fractures. The latter mentioned morphology of Np(IV) silica particles might facilitate the migration behavior of Np(IV) in a stabilized colloidal form under environmental conditions. The silica-enriched particles with densely closed surface are long-term stabilized as colloidal dispersion (>1 year) due to repulsion effects caused by significant surface charge. Particles synthesized from Si/Np = 9/1 carry exclusively negative surface charge in nearly the whole pH range from pH 3 to pH 10 with zetapotential = (-) 5 to (-) 30 mV. The zeta potentials of all particle systems containing silica are significantly shifted to more negative values below pH 7 where the isoelectrical point shifts from pH = 8.0 to 2.6 effecting negative charge under ambient conditions which supports electrostatic stabilization of Np(IV) particles. Particle surface charge at the slipping plane, particle size and shape necessarily depend on the initial magnitude of Si content in solution during particle formation. Particular changes of the morphology and internal structure of different Np(IV) silica colloids by aging are indicated by TEM and XPS. The composition and the crystallinity state of the initially formed amorphous phases partially changed into well-ordered nanocrystalline units characterized with fcc structure. The presence of silicate under conditions expected in a nuclear waste repository significantly influences the solubility of Np(IV) and provoke the stabilization of waterborne Np(IV) up to concentrations of 10-3 M, exceeding Np´s solubility limit by a factor of up 10.000. Neptunium and silicate significantly interact with each other, and thereby changing their individual hydrolysis and polymerization behavior. Silicate prevents the intrinsic formation of NpO2 NCs in fcc-structure, and at the same time, Np(IV) prevents the polymerization of silicate. Both processes result in the formation of Np(IV) silica colloids which possibly influence the migration behavior and fate of Np in the waste repositories and surrounding environments. For tetravalent actinides in general, the most significant transport in the environment would occur by colloidal particles. Therefore, Np(IV) silica colloids could have a significant implication in the migration of Np, the important minor actinide in the waste repositories, via colloidal transport.
3

Actinide Interaction with Zr-bearing Phases: Spectroscopic Investigations of An3+ Sorption and Incorporation Reactions with Zirconia

Eibl, Manuel 12 January 2021 (has links)
Actinides, especially plutonium (Pu) and americium (Am), are of large concern for the disposal of spent nuclear fuel (SNF). The rather long half-lives of the isotopes Pu-239, Am-241 and Am-243, are causing them to govern the radiotoxicity of SNF from about 500 to 1 million years after removal from the reactor core. Therefore, the safety of a final high-level radioactive waste (HLW) repository largely depends on the mobility of these actinide isotopes. In a worst-case scenario, where water enters a HLW repository, the dissolution of the SNF matrix may lead to the mobilization of actinides. In sub-surface environments under reducing conditions, these actinides can be expected to exist in their tetravalent or trivalent oxidation states, of which the latter one is more soluble and, thus, more mobile. Therefore, the trivalent oxidation state can be considered especially important. Following a release of these trivalent actinides, the multi-barrier concept of a final repository is designed to hinder their spreading into the environment through immobilization reactions such as adsorption to a surface or incorporation via secondary phase formation. One of the first possible interaction partners for actinides is the corrosion layer on the cladding material surrounding the fuel rods, consisting of zirconia (ZrO2). ZrO2 is capable to act as adsorber material for actinides as well as of incorporating large quantities of actinides. Furthermore, zirconia is a promising solid phase for the immobilization of certain waste streams from SNF reprocessing. Therefore, the possible interaction mechanisms between trivalent actinides and zirconia were studied in this thesis. In this work, various methods have been combined to gain comprehensive understanding of the macro scale as well as the molecular interactions taking place in the presence of zirconia. Information of macro scale phenomena in sorption and incorporation studies was obtained in batch-sorption experiments and with powder X-ray diffraction (PXRD), respectively. Luminescence spectroscopy (TRLFS, from time-resolved laser-induced fluorescence spectroscopy) was used in sorption and incorporation investigations to study molecular level interactions of trivalent elements on the surface or in the bulk of ZrO2. The incorporation studies were complemented with extended X-ray absorption fine-structure (EXAFS) spectroscopy. Most experiments were performed using Eu3+ (batch-sorption, TRLFS), or Y3+ (EXAFS) as actinide analogues. Spectroscopic sorption studies and complementary incorporation experiments were performed using the actinide Cm3+ (TRLFS). To study zirconia solid solutions, co-precipitation synthesis of M3+ doped hydrous zirconia, followed by calcination of the resulting phase was performed. A low-temperature hydrothermal synthesis procedure, adapted with the intent to simulate conditions potentially present in a HLW repository, was applied to selected Eu3+ doped ZrO2 compositions. The aim of these studies was to investigate how solid solution formation occurs under such hydrothermal conditions and to compare the incorporation behavior with that of the calcination method. Batch-sorption experiments revealed a favorable pH-dependent behavior for the retention of trivalent actinides in a HLW repository, as complete sorption of Eu3+ was achieved at a pH < 6 for low trivalent metal ion concentrations. The formation of three pH-dependent inner-sphere sorption complexes could be derived with TRLFS. Here, the spectroscopic signature of the third sorption complex differs from the other two. A very strong redshift of the Cm3+ emission peak (612.5 nm) and a long luminescence lifetime (190 ± 40 μs) allows for speculation, whether differing complexing anions, such as carbonates, could play a role or whether differing interaction processes, such as a surface layer incorporation could take place. The incorporation of trivalent cations into zirconia leads to a phase transformation from monoclinic (m) ZrO2, stable without any dopant to the stabilized tetragonal (t) and cubic (c) ZrO2 phases. At doping fractions high enough to stabilize the tetragonal or cubic phase, TRLFS revealed the presence of three differing dopant sites. The introduction of the aliovalent Eu3+ cation into the Zr4+ crystal structure results in the formation of oxygen vacancies to preserve charge neutrality in the crystal structure. Two of these dopant environments could be assigned to structurally incorporated Eu3+ with differing coordination numbers of 8 and 7, i.e. sites with zero or one oxygen vacancy in the first coordination sphere, respectively. The third Eu3+ species could be assigned to incorporation into surface or near-surface layers of zirconia. EXAFS revealed a constant environment of the host (Zr4+) and the dopant (Y3+) within the low doping range as well as within the stabilized zirconia phases. Therefore, the differing sites observed via TRLFS could not be observed here. Incorporation into t- or c-ZrO2 has shown a non-distinguishable spectroscopic behavior meaning that the dopant’s environment in t-ZrO2 and c-ZrO2 is very similar. TRLFS shows a low site symmetry of the dopant in both cases, despite of the high bulk symmetry, i.e. tetragonal or cubic. In the non-stabilized monoclinic crystal structure, Eu3+ incorporation was found to be accompanied by the formation of a secondary phase. The secondary phase is assumed to be nano clusters of the dopant’s oxide, forming inside the zirconia matrix. The hydrothermal synthesis of Eu3+ doped ZrO2 revealed a different phase composition as a function of dopant concentration than observed with the calcination method. At low dopant concentrations where the m-ZrO2 prevails after high-temperature treatment, t- and c-ZrO2 are very abundant after hydrothermal treatment. This is a result of the small crystallite size resulting from the low synthesis temperature and short synthesis time, which causes the stabilization of the tetragonal phase even without any dopant present. At higher doping fractions, phase compositions comparable to the calcination synthesis are obtained. Both, the sorption as well as the incorporation behavior of zirconia studied here show properties advantageous for the retention of trivalent actinides within the environment of a HLW repository. TRLFS studies of the sorption speciation showed the formation of inner-sphere complexes and, possibly surface layer incorporated species, which are more stable under environmental conditions than interactions based on Coulomb interactions only. The speciation of the Cm3+ sorption on zirconia was studied and thermodynamic data was derived via surface complexation modeling for the first time. The very systematic approach of studying the doping throughout a large range resulted in basic understanding of the dopant behavior in zirconia. The incorporation capabilities of actinides into the lattice was observed to be high for t- and c-ZrO2 while rather limited for m-ZrO2. Therefore, the monoclinic structure seems to be unsuitable for incorporating trivalent dopants. Under conditions potentially present in a HLW repository, i.e. hydrothermal synthesis conditions, the amount of m-ZrO2 was observed to be strongly reduced for low overall dopant concentrations. This could facilitate the incorporation of actinides into zirconia even at low concentration levels and therefore, increase its capabilities to act as a retention barrier in a HLW repository. The conclusions of this thesis are of importance in the field of nuclear waste management as they help closing gaps in the understanding of retention processes of trivalent actinides. The obtained molecular information can be built on with experiments designed to obtain reliable thermodynamic data, used in the safety analysis of a HLW repository. Furthermore, the interaction of zirconia with other actinides can be studied in a targeted manner based on the knowledge obtained in this thesis. In the field of material sciences, the molecular information obtained here is of interest as well, as zirconia is a very versatile material. This is due to its abundance of applications ranging from electrolyte material in solid oxide fuel cells to building materials.
4

Investigation into the Formation of Nanoparticles of Tetravalent Neptunium in Slightly Alkaline Aqueous Solution

Husar, Richard 20 August 2015 (has links)
Considering the worldwide growing discharge of minor actinides and the current need for geological disposal facilities for radioactive waste, this work provides a contribution to the safety case concerning Np transport if it would be released from deep repository sites and moving from alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed to be immobile in aqueous environment due to the low solubility solution of Np(IV). For tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous Np(IV) silica colloids under environmentally relevant conditions. The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO3)5]6-) induces the intrinsic formation of nanocrystalline NpO2 in the solution phase. The resulting irregularly shaped nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type structure (space group ). The NCs tend to agglomerate under ambient conditions due to the weakly charged hydrodynamic surface at neutral pH (zetapotential ~0 mV). The formation of micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent precipitation cause immobilization of the major amount of Np(IV) in the Np carbonate system. Agglomeration of NpO2 nanocrystals in dependence on time was indicated by PCS and UV-vis absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 742 nm. Hitherto, unknown polynuclear species as intermediate species of NpO2 nanocrystal formation were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides. Intrinsic formation of NpO2 (fcc) nanocrystals under ambient environmental conditions is prevented by admixing silicic acid: amorphous Np(IV) silica colloids are formed when silicate is present in carbonate solution. Herein, the initial molar ratio of Si to Np in solution lead to the formation of Np(IV) silica particles of different composition and size where Si content determines the structure and stability of resulting colloids. Implications for different electronic structures of Np(IV) in dependence on Si content in the solid phase are given by the shift of the absorption maximum at 742 nm characteristic for Np(IV) colloids, silica excess of 5 times the magnitude of Si to Np reveal a redshift up to 6 nm in the colloidal UV-vis spectrum. Precipitation of Np(IV) particles in the ternary system results in a different coordination sphere of Np(IV) compared to the binary system, and the incorporation of Si into internal structure of Np(IV) silica colloids in coffinite-like structure is confirmed by EXAFS. TEM confirms different kinds of particle morphologies in dependence on the silica content. Silica-poor systems reveal porous particles in the micron-range which consist of irregular cross-linked hydrolyzed Np(IV) silica compartments with pores <15 nm. In contrast, long-term stabilized and silica-enriched systems are characterized by isolated particles with an average particle size of 45 nm. Agglomerates of such isolated Np(IV) silica particles appear as consolidated amorphous solids with a densely closed surface and exhibit no internal fractures. The latter mentioned morphology of Np(IV) silica particles might facilitate the migration behavior of Np(IV) in a stabilized colloidal form under environmental conditions. The silica-enriched particles with densely closed surface are long-term stabilized as colloidal dispersion (>1 year) due to repulsion effects caused by significant surface charge. Particles synthesized from Si/Np = 9/1 carry exclusively negative surface charge in nearly the whole pH range from pH 3 to pH 10 with zetapotential = (-) 5 to (-) 30 mV. The zeta potentials of all particle systems containing silica are significantly shifted to more negative values below pH 7 where the isoelectrical point shifts from pH = 8.0 to 2.6 effecting negative charge under ambient conditions which supports electrostatic stabilization of Np(IV) particles. Particle surface charge at the slipping plane, particle size and shape necessarily depend on the initial magnitude of Si content in solution during particle formation. Particular changes of the morphology and internal structure of different Np(IV) silica colloids by aging are indicated by TEM and XPS. The composition and the crystallinity state of the initially formed amorphous phases partially changed into well-ordered nanocrystalline units characterized with fcc structure. The presence of silicate under conditions expected in a nuclear waste repository significantly influences the solubility of Np(IV) and provoke the stabilization of waterborne Np(IV) up to concentrations of 10-3 M, exceeding Np´s solubility limit by a factor of up 10.000. Neptunium and silicate significantly interact with each other, and thereby changing their individual hydrolysis and polymerization behavior. Silicate prevents the intrinsic formation of NpO2 NCs in fcc-structure, and at the same time, Np(IV) prevents the polymerization of silicate. Both processes result in the formation of Np(IV) silica colloids which possibly influence the migration behavior and fate of Np in the waste repositories and surrounding environments. For tetravalent actinides in general, the most significant transport in the environment would occur by colloidal particles. Therefore, Np(IV) silica colloids could have a significant implication in the migration of Np, the important minor actinide in the waste repositories, via colloidal transport.
5

Strukturelle Untersuchung der Rückhaltung von Actiniden und ihrer Übergangsmetallhomologe an ausgewählte Alumosilikat-Phasen

Neumann, Julia 20 January 2022 (has links)
Die sichere Endlagerung hochradioaktiver Stoffe ist weltweit eine der großen Herausforderungen des 21. Jahrhunderts. Der abgebrannte Kernbrennstoff ist hoch-radiotoxisch und stellt somit eine Gefährdung für Mensch und Umwelt dar. Daher muss der radioaktive Abfall für bis zu einer Million Jahre von der Umwelt isoliert werden. International wird dafür die Endlagerung in tiefengeologischen Formationen favorisiert. Für ein solches Endlager für radioaktive Abfälle kommen in Deutschland Salz-, Ton- und Kristallinformationen in Frage, welche aufgrund der verschiedenen mineralogischen und geochemischen Bedingungen Radionuklide (RN) unterschiedlich stark immobilisieren. Wesentliche Prozesse sind dabei Ausfällung, Einbau in Festphasen und Sorption an Mineraloberflächen. Für eine belastbare Risikobewertung möglicher Endlagerstandorte sind geeignete Transportmodelle notwendig, welche auf umfangreiche thermodynamische Daten angewiesen sind. Hierfür sind insbesondere Studien zu Wechselwirkungen (WW) von RN mit Mineralphasen im Kristallingestein, d.h. Quarz, Feldspäten, Glimmern, nicht ausreichend verfügbar. Die minoren Actinide Am und Cm liegen in wässriger Lösung grundsätzlich im dreiwertigen Oxidationszustand vor. Außerdem werden unter den zu erwarteten reduzierenden Bedingungen in einem Endlager auch Np zu einem geringen und Pu zu einem nennenswerten Teil dreiwertig vorliegen. Daher beschäftigt sich der erste Teil der Arbeit mit den WW dreiwertiger Actiniden (An(III) = Am, Cm) mit Feldspäten. Der zweite Teil der Arbeit beschäftigt sich mit dem Einfluss von Elektrolyten auf die Rückhaltung von Actiniden an Mineraloberflächen. Dabei wurde zum einen der Einfluss des natürlich häufig auftretenden, anorganischen Liganden Sulfat auf die Sorption von An(III) an das Schichtsilikat (Glimmer) Muskovit untersucht, sowie in einem weiteren Beispiel der Einfluss der Elektrolytzusammensetzung auf die Sorption des Actinids Thorium an Muskovit untersucht. Th liegt in wässriger Lösung ausschließlich vierwertig vor und wird stark hydrolysiert, wodurch die Bildung polynuklearer Spezies begünstigt ist. Methodisch kommen in diesem Teil der Arbeit neben Oberflächenröntgenbeugung (SXRD) auch Alphaspektrometrie und Rasterkraftmikroskopie (AFM) zum Einsatz. Die Ergebnisse der Arbeit leisten einen signifikanten Beitrag zur realistischen Abschätzung der Mobilität drei- und vierwertiger Actiniden im Kristallingestein. Die Ergebnisse der Arbeit werden in Zukunft Simulationen des reaktiven Transports und somit die Auswahl eines geeigneten Standorts für ein Endlager für radioaktiven Abfall unterstützen.
6

Microbial Diversity in Opalinus Clay and Interaction of Dominant Microbial Strains with Actinides (Final Report BMWi Project No.: 02 E 10618)

Moll, Henry, Lütke, Laura, Bachvarova, Velina, Steudner, Robin, Geißler, Andrea, Krawczyk-Bärsch, Evely, Selenska-Pobell, Sonja, Bernhardt, Gert 01 October 2013 (has links) (PDF)
For the first time microbial tDNA could be isolated from 50 g unperturbed Mont Terri Opalinus Clay. Based on the analysis of the tDNA the bacterial diversity of the unperturbed clay is dominated by representatives of Firmicutes, Betaproteobacteria, and Bacteriodetes. Firmicutes also dominate after treatment of the clay with R2A medium. Bacteria isolated from Mont Terri Opalinus Clay on R2A medium were related to Sporomusa spp., Paenibacillus spp., and Clostridium spp.. All further investigations are concentrated on the unique isolates Sporomusa sp. MT-2 and Paenibacillus sp. MT-2. Cells of the type Sporomusa sp. MT-2 and Paenibacillus sp. MT-2 were comprehensively analyzed in terms of growing, morphology, functional groups of the cell envelope, and cell membrane structure. Strong actinide(An)/lanthanide(Ln)-interactions with the Opalinus Clay isolates and the Äspö-strain Pseudomonas fluorescens (CCUG 32456) could be determined within a broad pH range (2-8). The metals bind as a function of pH on protonated phosphoryl, carboxyl and deprotonated phosphoryl sites of the respective cell membrane. The thermodynamic surface complexation constants of bacterial An/Ln-species were determined and can be used in modeling programs. Depending on the used An different interaction mechanisms were found (U(VI): biosorption, partly biomineralisation; Cm(III): biosorption, indications for embedded Cm(III); Pu: biosorption, bioreduction and indications for embedded Pu). Different strategies of coping with U(VI) were observed comparing P. fluorescens planktonic cells and biofilms under the chosen experimental conditions. An enhanced capability of the biofilm to form meta-autunite in comparison to the planktonic cells was proven. Conclusively, the P. fluorescens biofilm is more efficient in U(VI) detoxification. In conclusion, Mont Terri Opalinus Clay contains bacterial communities, that may influence the speciation and hence the migration behavior of selected An/Ln under environmental conditions.
7

The sorption of uranium(VI) and neptunium(V) onto surfaces of selected metal oxides and alumosilicates studied by in situ vibrational spectroscopy

Müller, K. January 2010 (has links)
The migration behavior of actinides and other radioactive contaminants in the environment is controlled by prominent molecular phenomena such as hydrolysis and complexation reactions in aqueous solutions as well as the diffusion and sorption onto minerals present along groundwater flow paths. These reactions significantly influence the mobility and bioavailability of the metal ions in the environment, in particular at liquid-solid interfaces. Hence, for the assessment of migration processes the knowledge of the mechanisms occurring at interfaces is crucial. The required structural information can be obtained using various spectroscopic techniques. In the present study, the speciation of uranium(VI) and neptunium(V) at environmentally relevant mineral – water interfaces of oxides of titania, alumina, silica, zinc, and alumosilicates has been investigated by the application of attenuated total reflection Fouriertransform infrared (ATR FT-IR) spectroscopy. Moreover, the distribution of the hydrolysis products in micromolar aqueous solutions of U(VI) and Np(V/VI) at ambient atmosphere has been characterized for the first time, by a combination of ATR FT-IR spectroscopy, near infrared (NIR) absorption spectroscopy, and speciation modeling applying updated thermodynamic databases. From the infrared spectra, a significant change of the U(VI) speciation is derived upon lowering the U(VI) concentration from the milli- to the micromolar range, strongly suggesting the dominance of monomeric U(VI) hydrolysis products in the micromolar solutions. In contradiction to the predicted speciation, monomeric hydroxo species are already present at pH ≥ 2.5 and become dominant at pH 3. At higher pH levels (> 6), a complex speciation is evidenced including carbonate containing complexes. For the first time, spectroscopic results of Np(VI) hydrolysis reactions are provided in the submillimolar concentration range and at pH values up to 5.3, and they are comparatively discussed with U(VI). For both actinides, the formation of similar species is suggested at pH ≤ 4, whereas at higher pH, the infrared spectra evidence structurally different species. At pH 5, the formation of a carbonate-containing dimeric complex, that is (NpO2)2CO3(OH)3^-, is strongly suggested, whereas carbonate complexation occurs only under more alkaline conditions in the U(VI) system. The results from the experiments of the sorption processes clearly demonstrate the formation of stable U(VI) surface complexes at all investigated mineral phases. This includes several metal oxides, namely TiO2, Al2O3, and SiO2, serving as model systems for the elucidation of more complex mineral systems, and several alumosilicates, such as kaolinite, muscovite and biotite. From a multiplicity of in situ experiments, the impact of sorbent characteristics and variations in the aqueous U(VI) system on the sorption processes was considered. A preferential formation of an inner-sphere complex is derived from the spectra of the TiO2 and SiO2 phases. In addition, since the in situ FT-IR experiments provide an online monitoring of the absorption changes of the sorption processes, the course of the formation of the U(VI) surface complexes can be observed spectroscopically. It is shown that after prolonged sorption time on TiO2, resulting in a highly covered surface, outer-sphere complexation predominates the sorption processes. The prevailing crystallographic modification, namely anatase and rutile, does not significantly contribute to the spectra, whereas surface specific parameters, e.g. surface area or porosity are important. A significant different surface complexation is observed for Al2O3. The formation of innerspheric species is assumed at low U(VI) surface coverage which is fostered at low pH, high ionic strength and short contact times. At proceeded sorption the surface complexation changes. From the spectra, an outer-spheric coordination followed by surface precipitation or polymerization is deduced. Moreover, in contrast to TiO2, the appearance of ternary U(VI) carbonate complexes on the γ-Al2O3 surface is suggested. The first results of the surface reactions on more complex, naturally occurring minerals (kaolinite, muscovite and biotite) show the formation of U(VI) inner-sphere sorption complexes. These findings are supported by the spectral information of the metal oxide surfaces. In this work, first spectroscopic results from sorption of aqueous Np(V) on solid mineral phases are provided. It is shown that stable inner-sphere surface species of NpO2 ^+ are formed on TiO2. Outer-sphere complexation is found to play a minor role due to the pH independence of the sorption species throughout the pH range 4 – 7.6. The comparative spectroscopic experiments of Np(V) sorption onto TiO2, SiO2, and ZnO indicate structurally similar bidentate surface complexes. The multiplicity of IR spectroscopic experiments carried out within this study yields a profound collection of spectroscopic data which will be used as references for future investigations of more complex sorption systems in aqueous solution. Furthermore, from a methodological point of view, this study comprehensively extends the application of ATR FT-IR spectroscopic experiments to a wide range in the field of radioecology. The results obtained in this work contribute to a better understanding of the geochemical interactions of actinides, in particular U(VI) and Np(V/VI), in the environment. Consequently, more reliable predictions of actinides migration which are essential for the safety assessment of nuclear waste repositories can be performed.
8

Microbial Diversity in Opalinus Clay and Interaction of Dominant Microbial Strains with Actinides (Final Report BMWi Project No.: 02 E 10618)

Moll, Henry, Lütke, Laura, Bachvarova, Velina, Steudner, Robin, Geißler, Andrea, Krawczyk-Bärsch, Evely, Selenska-Pobell, Sonja, Bernhardt, Gert January 2013 (has links)
For the first time microbial tDNA could be isolated from 50 g unperturbed Mont Terri Opalinus Clay. Based on the analysis of the tDNA the bacterial diversity of the unperturbed clay is dominated by representatives of Firmicutes, Betaproteobacteria, and Bacteriodetes. Firmicutes also dominate after treatment of the clay with R2A medium. Bacteria isolated from Mont Terri Opalinus Clay on R2A medium were related to Sporomusa spp., Paenibacillus spp., and Clostridium spp.. All further investigations are concentrated on the unique isolates Sporomusa sp. MT-2 and Paenibacillus sp. MT-2. Cells of the type Sporomusa sp. MT-2 and Paenibacillus sp. MT-2 were comprehensively analyzed in terms of growing, morphology, functional groups of the cell envelope, and cell membrane structure. Strong actinide(An)/lanthanide(Ln)-interactions with the Opalinus Clay isolates and the Äspö-strain Pseudomonas fluorescens (CCUG 32456) could be determined within a broad pH range (2-8). The metals bind as a function of pH on protonated phosphoryl, carboxyl and deprotonated phosphoryl sites of the respective cell membrane. The thermodynamic surface complexation constants of bacterial An/Ln-species were determined and can be used in modeling programs. Depending on the used An different interaction mechanisms were found (U(VI): biosorption, partly biomineralisation; Cm(III): biosorption, indications for embedded Cm(III); Pu: biosorption, bioreduction and indications for embedded Pu). Different strategies of coping with U(VI) were observed comparing P. fluorescens planktonic cells and biofilms under the chosen experimental conditions. An enhanced capability of the biofilm to form meta-autunite in comparison to the planktonic cells was proven. Conclusively, the P. fluorescens biofilm is more efficient in U(VI) detoxification. In conclusion, Mont Terri Opalinus Clay contains bacterial communities, that may influence the speciation and hence the migration behavior of selected An/Ln under environmental conditions.
9

Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems

Schmeide, Katja, Fritsch, Katharina, Lippold, Holger, Poetsch, Maria, Kulenkampff, Johannes, Lippmann-Pipke, Johanna, Jordan, Norbert, Joseph, Claudia, Moll, Henry, Cherkouk, Andrea, Bader, Miriam 15 March 2016 (has links) (PDF)
The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this purpose, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol/kg) and the background electrolyte. The U(VI) complexation by propionate was studied in dependence on ionic strength (up to 4 mol/kg NaClO4) by TRLFS, ATR FT-IR spectroscopy, and DFT calculations. An influence of ionic strength on stability constants was detected, depending on the charge of the respective complexes. The conditional stability constants, determined for 1:1, 1:2, and 1:3 complexes at specific ionic strengths, were extrapolated to zero ionic strength. The interaction of the bacteria Sporomusa sp. MT-2.99 and Paenibacillus sp. MT-2.2 cells, isolated from Opalinus Clay, with Pu was studied. The experiments can be divided into such without an electron donor where biosorption is favored and such with addition of Na-pyruvate as an electron donor stimulating also bioreduction processes. Moreover, experiments were performed to study the interactions of the halophilic archaeon Halobacterium noricense DSM-15987 with U(VI), Eu(III), and Cm(III) in 3 M NaCl solutions. Research for improving process understanding with respect to the mobility of multivalent metals in systems containing humic matter was focused on the reversibility of elementary processes and on their interaction. Kinetic stabilization processes in the dynamics of humate complexation equilibria were quantified in isotope exchange studies. The influence of high salinity on the mobilizing potential of humic-like clay organics was systematically investigated and was described by modeling. The sorption of Tc(VII)/Tc(IV) onto the iron(II)-containing minerals magnetite and siderite was studied by means of batch sorption experiments, ATR FT-IR and X-ray absorption spectroscopy. The strong Tc retention at these minerals could be attributed to surface-mediated reduction of Tc(VII) to Tc(IV). An influence of ionic strength was not observed. The influence of ionic strength (up to 3 mol/kg) and background electrolyte (NaCl, CaCl2, MgCl2) on U(VI) sorption onto montmorillonite was studied. The U(VI) sorption is influenced by the background electrolyte, the influence of ionic strength is small. Surface complexation modeling was performed applying the 2SPNE SC/CE model. Surface complexation constants were determined for the NaCl and CaCl2 system and were extrapolated to zero ionic strength. Surface complexation in mixed electrolytes can be modeled applying surface complexation constants derived for pure electrolytes. The influence of citrate on U(VI) diffusion in Opalinus Clay was studied using Opalinus Clay pore water as background electrolyte. The diffusion parameter values obtained for the HTO through-diffusion and the U(VI) in-diffusion in the absence of citric acid were in agreement with literature data. In the presence of citric acid, U(VI) diffusion was significantly retarded, which was attributed to a change in speciation, probably U(VI) was reduced to U(IV). Larger-scale heterogeneous material effects on diffusive transport were investigated with PET. Diffusion parameters were derived by optimum fit of a FEM-model to the measurement. These parameters are in accordance with the results from 1D-through-diffusion experiments. Deviations from the simple transversal-isotropic behavior, which are identified as residuals from the model, are indications for heterogeneous transport on the mm-scale. PET measurements were also conducted in order to display the improvement of the EDZ with waterglass injections. These experiments enable to draw conclusions on the complex reactive transport process and thus an estimation of the achieved improvement of the barrier function. The image reconstruction procedure was largely improved, mainly with the aid of Monte-Carlo simulations, and now allows quantitative analysis and error estimation.
10

Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems: Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the presence of repository-relevant organics

Schmeide, Katja, Fritsch, Katharina, Lippold, Holger, Poetsch, Maria, Kulenkampff, Johannes, Lippmann-Pipke, Johanna, Jordan, Norbert, Joseph, Claudia, Moll, Henry, Cherkouk, Andrea, Bader, Miriam 15 March 2016 (has links)
The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this purpose, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol/kg) and the background electrolyte. The U(VI) complexation by propionate was studied in dependence on ionic strength (up to 4 mol/kg NaClO4) by TRLFS, ATR FT-IR spectroscopy, and DFT calculations. An influence of ionic strength on stability constants was detected, depending on the charge of the respective complexes. The conditional stability constants, determined for 1:1, 1:2, and 1:3 complexes at specific ionic strengths, were extrapolated to zero ionic strength. The interaction of the bacteria Sporomusa sp. MT-2.99 and Paenibacillus sp. MT-2.2 cells, isolated from Opalinus Clay, with Pu was studied. The experiments can be divided into such without an electron donor where biosorption is favored and such with addition of Na-pyruvate as an electron donor stimulating also bioreduction processes. Moreover, experiments were performed to study the interactions of the halophilic archaeon Halobacterium noricense DSM-15987 with U(VI), Eu(III), and Cm(III) in 3 M NaCl solutions. Research for improving process understanding with respect to the mobility of multivalent metals in systems containing humic matter was focused on the reversibility of elementary processes and on their interaction. Kinetic stabilization processes in the dynamics of humate complexation equilibria were quantified in isotope exchange studies. The influence of high salinity on the mobilizing potential of humic-like clay organics was systematically investigated and was described by modeling. The sorption of Tc(VII)/Tc(IV) onto the iron(II)-containing minerals magnetite and siderite was studied by means of batch sorption experiments, ATR FT-IR and X-ray absorption spectroscopy. The strong Tc retention at these minerals could be attributed to surface-mediated reduction of Tc(VII) to Tc(IV). An influence of ionic strength was not observed. The influence of ionic strength (up to 3 mol/kg) and background electrolyte (NaCl, CaCl2, MgCl2) on U(VI) sorption onto montmorillonite was studied. The U(VI) sorption is influenced by the background electrolyte, the influence of ionic strength is small. Surface complexation modeling was performed applying the 2SPNE SC/CE model. Surface complexation constants were determined for the NaCl and CaCl2 system and were extrapolated to zero ionic strength. Surface complexation in mixed electrolytes can be modeled applying surface complexation constants derived for pure electrolytes. The influence of citrate on U(VI) diffusion in Opalinus Clay was studied using Opalinus Clay pore water as background electrolyte. The diffusion parameter values obtained for the HTO through-diffusion and the U(VI) in-diffusion in the absence of citric acid were in agreement with literature data. In the presence of citric acid, U(VI) diffusion was significantly retarded, which was attributed to a change in speciation, probably U(VI) was reduced to U(IV). Larger-scale heterogeneous material effects on diffusive transport were investigated with PET. Diffusion parameters were derived by optimum fit of a FEM-model to the measurement. These parameters are in accordance with the results from 1D-through-diffusion experiments. Deviations from the simple transversal-isotropic behavior, which are identified as residuals from the model, are indications for heterogeneous transport on the mm-scale. PET measurements were also conducted in order to display the improvement of the EDZ with waterglass injections. These experiments enable to draw conclusions on the complex reactive transport process and thus an estimation of the achieved improvement of the barrier function. The image reconstruction procedure was largely improved, mainly with the aid of Monte-Carlo simulations, and now allows quantitative analysis and error estimation.

Page generated in 0.0474 seconds