Spelling suggestions: "subject:"alcoholic fatty river"" "subject:"alcoholic fatty liver""
11 |
Measurement of Brown Adipose Tissue Using MRI in Adult HumansOng, Frank Joseph 30 November 2017 (has links)
BACKGROUND: There has been renewed interest in the study of brown adipose tissue (BAT) as a potential therapeutic target for obesity, diabetes and non-alcoholic fatty liver disease (NAFLD). There is now much evidence to suggest that BAT is not only important in thermogenesis but also plays an important role in metabolism. In adults, cold-induced BAT activation has led to a significant increase in insulin sensitivity and energy expenditure as well as decreased blood sugar levels. Thus, it is important to identify factors associated with these metabolic disorders such as the presence and activity of BAT to better understand if and how BAT can be targeted to treat these disorders. However, as a potential therapeutic target, it is important to develop accurate, precise, robust and reproducible non-invasive modalities to measure BAT.
PROJECT OBJECTIVES:
1) Develop and assess protocols for the use of MRI in measuring BAT characteristics and activity
2) Examine the relationship between BAT MR outcomes and known covariates such as age, sex, body fat percentage and outdoor temperature in adult humans
3) Determine if there is any association between BAT outcomes and liver fat in adult humans, before and after adjusting for potential covariates of liver fat such as age, sex and body fat percentage
METHODS: In total, 36 healthy participants (i.e. no conditions or medications that could influence BAT metabolism and/or liver disease) aged 18 to 60 years were recruited to this cross-sectional study. There were two study visits. In visit 1, anthropometrics (i.e. height, weight and waist circumference), blood pressure and body composition (via dual x-ray energy absorptiometry) were measured. Additionally, fasting bloodwork was collected and a 75-g oral glucose tolerance test (OGTT) was administered. During visit 2, participants were exposed to a standardized cold exposure set at 18°C for 3 hours using a water-perfused suit. MRI scans were acquired to evaluate changes in fat-fraction (FF%) and T2* relaxation (T2*) (BAT MR outcomes), liver fat and abdominal fat after a cold exposure. During the cold exposure protocol, mean skin temperature (MST) was monitored using 12 wireless temperature loggers placed at different sites of the body while electromyography (EMG) was used to measure shivering intensity.
RESULTS: In the current study, an MRI protocol capable of detecting BAT in the supraclavicular (SCV) region was developed. This protocol included the use of FF and T2* masks to more accurately characterize BAT in the SCV region. Additionally, the MR segmentation protocol was found to be very reliable, as demonstrated by excellent ICC values (i.e. ICCagreement and ICCconsistency ≥ 0.90) for all BAT MR outcomes irrespective of cold exposure. As expected, FF% (mean difference = -2.97; p < 0.0001*) and T2* (mean difference = -0.84; p < 0.0001*) values in the SCV significantly decreased after cold exposure, consistent with BAT activation. Furthermore, the decline in both FF% and T2* after cooling was specific to the SCV region, as these changes did not occur in the posterior neck fat. In examining the relationship between BAT MR outcomes and known covariates of BAT (i.e. age, sex, body fat percentage and outdoor temperature), it is important to note that lower FF% or T2* values are reflective of a browner phenotype while a greater reduction in FF% is indicative of higher BAT activity. BAT characteristics (A: pre-cold FF%; B: pre-cold T2*) and BAT activity (C: FF% reduction) were correlated with age (A: r = 0.54; p = 0.0007*; B: r = 0.42; p = 0.0112*; C: r = -0.39; p = 0.0213*) and body fat percentage (A: r = 0.83; p < 0.0001*; B: r = 0.58; p = 0.0002*; C: r = -0.64; p < 0.0001*). That is, higher age and body fat were associated with a less brown phenotype prior to cold exposure and with less BAT activity (i.e. lower FF% decline) in response to cold exposure. However, no associations were found between BAT MR outcomes and sex or outdoor temperature. Lastly, liver fat was associated with higher values of pre-cold FF% (r = 0.60; p < 0.0001*) and pre-cold T2* (r = 0.47; p = 0.0040*) while FF% reduction was inversely correlated with liver fat (r = -0.38; p = 0.0295*). Additionally, the relationship between BAT MR outcomes and liver fat still existed after adjusting for age and sex while its effects were mediated by adiposity.
CONCLUSION: In this study, a highly reliable MR segmentation protocol was developed that is capable of measuring BAT characteristics and activity irrespective of cold exposure. Additionally, the cold exposure protocol used was sufficient to elicit changes in BAT MR outcomes, as demonstrated by significant changes in FF% and T2* after cooling. Consistent with previous studies, BAT outcomes (as measured by MRI) were associated with age and body fat percentage. Lastly, findings in this thesis provide strong supporting data that BAT may regulate liver lipid content, however, the extent and mechanisms remain to be determined. / Thesis / Master of Science (MSc)
|
12 |
Factors determining the progression of nonalcoholic fatty liver disease : the role of abnormal fatty acid and glucocorticoid metabolismMacFarlane, David Peter January 2011 (has links)
Obesity and insulin resistance are associated with a constellation of features including hypertension, dyslipidaemia, type 2 diabetes, and premature cardiovascular disease, collectively termed the metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD) represents the hepatic component of this syndrome, incorporating a spectrum of liver disease with increasing morbidity and mortality, from simple steatosis, to non-alcoholic steatohepatitis (or NASH), fibrosis, cirrhosis and ultimately hepatocellular carcinoma. However, factors influencing this progression are incompletely understood. In this thesis I sought to investigate pathways which promote hepatic inflammation and fibrosis by studying two contrasting dietary models of NAFLD in mice in which the risk of hepatic inflammation, insulin resistance and fibrosis differ; namely the methionine and choline deficient diet (MCDD) which induces steatohepatitis, hepatic insulin resistance, and weight loss, and the choline deficient diet (CDD) which may be protected from insulin resistance, and leads to steatosis without inflammation or weight loss. I investigated the possible molecular mechanisms underlying these differences, and whether they influenced progression to hepatic fibrosis induced by carbon tetrachloride (CCl4).
|
13 |
A study of non-alcoholic fatty liver disease (NAFLD) in South African patients and analysis of candidate genes in insulin resistance and fatty acid oxidation.Kruger, F. C. 12 1900 (has links)
Thesis (PhD (Medicine. Internal Medicine))--Stellenbosch University, 2008. / Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease in Western
countries, extending from steatosis (FLD) to steatohepatitis (NASH). Differentiation between
NASH and nonprogressive NAFLD is difficult on clinical grounds therefore a need exists to
identify reliable biomarkers of disease progression.
The aims of the study were 1) to describe the disease profile of NAFLD/NASH in South African
patients of the Western Cape, 2) to investigate the metabolic derangements associated with this
condition, including insulin resistance, lipid abnormalities and liver fibrogenesis, and 3) to
assess the possible involvement of candidate genes in relation to the disease phenotype in the
patient cohort.
A total of 233 patients (73% female) were enrolled in this study, consisting of 69% Cape
Coloured, 25% Caucasian, 5% Black and 1% Asian individuals. All subjects were obese or
overweight based on the assessment of body mass index (BMI). Screening for NAFLD identified
182 patients (87%) with ultrasonographical evidence of fatty infiltration and/or hepatomegaly.
Liver biopsies were performed on patients with persistently abnormal liver functions and/or
hepatomegaly. NAFLD was confirmed histologically in 111 patients of whom 36% had NASH
and 17% advanced liver fibrosis. None of the Black patients had advanced fibrosis.
|
14 |
Τα συστατικά στοιχεία του συστήματος λιπιδίων και λιποπρωτεϊνών ως κεντρικοί ρυθμιστές στην εμφάνιση της παχυσαρκίας και της μη αλκοολικής λιπώδους νόσου του ήπατος σε πειραματικά μοντέλα ποντικώνΚαραβία, Ελένη 26 July 2013 (has links)
Στην παρούσα εργασία, μελετήσαμε την συνεισφορά των μεταβολικών μονοπατιών της HDL και των χυλομικρών/VLDL στην εμφάνιση της παχυσαρκίας, στις διαταραχές του μεταβολισμού της γλυκόζης, στην εναπόθεση των τριγλυκεριδίων στο ήπαρ και στην ανάπτυξη της διατροφικά επαγόμενης μη αλκοολικής λιπώδους νόσου του ήπατος (NAFLD). Έτσι, επιλέξαμε να εστιάσουμε στην μελέτη των απολιποπρωτεϊνών Α-Ι (apoA-I) και Ε (apoE) και του ενζύμου λεκιθινο-χοληστερολική ακυλοτρανσφεράση (LCAT). Η apoA-I αποτελεί το κύριο συστατικό των υψηλής πυκνότητας λιποπρωτεϊνών (HDL) και είναι υπεύθυνη για την σύνθεση τους, η LCAT εστεροποιεί την ελεύθερη χοληστερόλη των λιποπρωτεϊνών του πλάσματος και ευθύνεται για το σχηματισμό των ώριμων σωματιδίων HDL και η apoE συμμετέχει στον καταβολισμό των υπολειμμάτων των χυλομικρών, των πολύ χαμηλής πυκνότητας λιποπρωτεϊνών (VLDL) και των χαμηλής πυκνότητας λιποπρωτεϊνών (LDL) από την κυκλοφορία καθώς και στην de novo βιογένεση της HDL. Προκειμένου να μελετηθεί ο ρόλος αυτών των μορίων στις παραπάνω μεταβολικές διαταραχές, μελετήσαμε πειραματικά μοντέλα ποντικών με έλλειψη στα γονίδια αυτά. Συγκεκριμένα, ομάδες ποντικών με έλλειψη στο γονίδιο που κωδικοποιεί την apoA-I (apoA-I-/-), την LCAT (LCAT-/-), την apoE (apoE-/-) αλλά και μια ομάδα ποντικών που εκφράζουν το πλήρες γονιδίωμα (C57BL/6) τέθηκαν σε δίαιτα πλούσια σε λιπαρά (δίαιτα δυτικού τύπου) για 24 εβδομάδες και πραγματοποιήθηκαν ιστολογικές, βιοχημικές και κινητικές αναλύσεις.
Στα apoA-I-/- ποντίκια παρατηρήθηκε αύξηση του σωματικού βάρους, έντονη συσσώρευση τριγλυκεριδίων στο ήπαρ, διαταραγμένη ιστολογική εικόνα του ήπατος και ανάπτυξη διατροφικά επαγόμενης NAFLD όπως, επίσης, παρουσίασαν ανοχή στη γλυκόζη και αντίσταση στην ινσουλίνη. Επιπλέον, η ποσοτικοποίηση του mRNA των γονιδίων FASN, DGAT-1 και PPAR-γ απέκλεισε την de novo σύνθεση των λιπαρών οξέων και των τριγλυκεριδίων σαν πιθανή αιτία της εμφάνισης της νόσου στα apoA-I-/- ποντίκια. Παρόμοια το μεταβολικό προφίλ δεν ανέδειξε σημαντικές διαφορές στην ενεργειακή δαπάνη μεταξύ των apoA-I-/- και των C57BL/6 ποντικών. Επίσης, παρατηρήθηκε ενισχυμένη εντερική απορρόφηση, ταχύτερη κάθαρση των μεταγευματικών τριγλυκεριδίων από την κυκλοφορία και μειωμένη ταχύτητα ηπατικής έκκρισης των πολύ χαμηλής πυκνότητας λιποπρωτεϊνών (VLDL) σε σχέση με την ομάδα ελέγχου. Γονιδιακή μεταφορά της apoA-IMilano μέσω αδενοϊού σε apoA-I-/- ποντίκια που έλαβαν δίαιτα δυτικού τύπου για 12 εβδομάδες, είχε ως αποτέλεσμα την μείωση της συγκέντρωσης των ηπατικών τριγλυκεριδίων και την βελτίωση της ιστολογικής εικόνας και αρχιτεκτονικής του ήπατος. Τα ποντίκια αυτά λόγω της έλλειψης της apoA-I δεν συνθέτουν HDL, επομένως η απουσία της HDL σε συνδυασμό με δίαιτα πλούσια σε λιπαρά οδηγεί στην εμφάνιση παχυσαρκίας, διαταραχών στο μεταβολισμό της γλυκόζης και NAFLD.
Για να αξιολογήσουμε τη συνεισφορά της ποιότητας της HDL στην εμφάνιση των παραπάνω διαταραχών, μελετήσαμε LCAT-/- ποντίκια που διαθέτουν ¨ανώριμη¨ δισκοειδή HDL. Όπως και στα ποντίκια που δεν εκφράζουν την apoA-I, έτσι και σε αυτή την ομάδα παρατηρήθηκε σημαντική διατροφικά επαγόμενη εναπόθεση τριγλυκεριδίων στο ήπαρ και διαταραγμένη ιστολογική εικόνα και αρχιτεκτονική του ήπατος. Αντιθέτως στα ποντίκια αυτά παρατηρήθηκε σημαντική αύξηση του σωματικού βάρους σε σχέση με την ομάδα ελέγχου. Επιπλέον, τα LCAT-/- ποντίκια δεν παρουσίασαν διαταραχές στο μεταβολισμό της γλυκόζης ενώ οι κινητικές αναλύσεις έδειξαν ότι η απουσία της LCAT σχετίζεται με αυξημένη εντερική απορρόφηση των διατροφικών λιπιδίων, ταχύτερη κάθαρση των μεταγευματικών τριγλυκεριδίων και μειωμένη ταχύτητα ηπατικής έκκρισης των VLDL σε σχέση με τα C57BL/6 ποντίκια. Γονιδιακή μεταφορά της LCAT μέσω αδενοϊού σε LCAT-/- ποντίκια που έλαβαν δίαιτα δυτικού τύπου για 12 εβδομάδες, είχε ως αποτέλεσμα την σημαντική μείωση της συγκέντρωσης των ηπατικών τριγλυκεριδίων και την βελτίωση της ιστολογικής εικόνας και αρχιτεκτονικής του ήπατος.
Τα μέχρι τώρα δεδομένα μας λοιπόν υποδεικνύουν πως το μεταβολικό μονοπάτι της HDL είναι κεντρικός ρυθμιστής διαδικασιών σχετιζόμενων με την εναπόθεση διατροφικών τριγλυκεριδίων στο ήπαρ και την εμφάνιση NAFLD. Επιπλέον, τα αποτελέσματα μας υποστηρίζουν πως η συνύπαρξη μειωμένης και πιθανόν δυσλειτουργικής HDL μαζί με NAFLD σε ασθενείς με μεταβολικό σύνδρομο δεν είναι μια απλή σύμπτωση αλλά υποδηλώνει μία ισχυρή μηχανιστική συσχέτιση ανάμεσα στις δύο αυτές καταστάσεις.
Προκειμένου να μελετηθεί ο ρόλος του μεταβολικού μονοπατιού των χυλομικρών, μελετήσαμε ποντίκια με έλλειψη στην apoE τα οποία καταβολίζουν βραδέως τα διατροφικά λιπίδια. Τα apoE-/- ποντίκια αντιστάθηκαν στην παχυσαρκία και στην εμφάνιση της διατροφικά επαγόμενης NAFLD σε σχέση με τα C57BL/6 ποντίκια. Επίσης, δεν παρουσίασαν διαταραχές στο μεταβολισμό της γλυκόζης και οι κινητικές αναλύσεις έδειξαν ότι είχαν βραδύτερη κάθαρση των μεταγευματικών τριγλυκεριδίων από την κυκλοφορία του αίματος. Θέλοντας να ερευνήσουμε και το ρόλο του υποδοχέα της LDL, πραγματοποιήθηκε μια σειρά ανάλογων πειραμάτων σε LDLr-/- ποντίκια που έλαβαν δίαιτα δυτικού τύπου για 24 εβδομάδες. Τα LDLr-/- ποντίκια είχαν σημαντική συσσώρευση τριγλυκεριδίων στο ήπαρ και NAFLD προτείνοντας ότι η ηπατική συσσώρευση τριγλυκεριδίων μέσω της apoE είναι μια διαδικασία ανεξάρτητη από τον LDLr. Τα ευρήματα μας προτείνουν ένα νέο ρόλο κλειδί για την apoE ως ένας περιφερικός συντελεστής στην ομοιόσταση των ηπατικών λιπιδίων και στην ανάπτυξη της διατροφικά επαγόμενης NAFLD. Επιπλέον, δείχνουν ότι οι διαταραχές στο μεταβολικό μονοπάτι των χυλομικρών σχετίζονται άμεσα με την εμφάνιση της NAFLD.
Συμπερασματικά, το μεταβολικό σύστημα λιπιδίων και λιποπρωτεϊνών φέρεται να κατέχει κεντρικό ρόλο στην εναπόθεση ηπατικών τριγλυκεριδίων και στην εμφάνιση της NAFLD. / In the present study, we investigated the contribution of HDL and the clylomicron/VLDL pathways in the development of obesity, glucose metabolism and diet-induced non alcoholic fatty liver disease (NAFLD). Thus, we chose to study apolipoproteins A-I (apoA-I) and E (apoE), as well as the enzyme lecithin:cholesterol acyltransferase (LCAT). ApoA-I is the main protein of high density lipoprotein (HDL) and is responsible for it’s synthesis, LCAT esterifies the free cholesterol of plasma lipoproteins and forms mature particles of HDL and apoE participates in the catabolism of chylomicrons, very low density lipoproteins (VLDL) and low density lipoproteins (LDL) and also participates in the de novo biogenesis of HDL. In an attempt to study the role of all these particles in the development of diet-induced NAFLD, apoA-I deficient, LCAT deficient, apoE deficient and control C57BL/6 mice were fed western-type diet (17.3% protein, 48.5% carbohydrate, 21.2% fat, 0.2% cholesterol, 4.5Kcal/g) for 24 weeks and their sensitivity towards NAFLD was assessed by histological and biochemical methods.
ApoA-I deficient (apoA-I-/-) mice showed increased body weight, increased diet-induced hepatic triglyceride deposition and disturbed hepatic histology while they exhibited reduced glucose tolerance and insulin sensitivity. Quantification of FASN, DGAT-1, and PPARγ mRNA expression suggested that the increased hepatic triglyceride content of the apoA-I-/- mice was not due to de novo synthesis of triglycerides. Similarly, metabolic profiling did not reveal differences in the energy expenditure between the two mouse groups. However, apoA-I-/- mice exhibited enhanced intestinal absorption of dietary triglycerides, accelerated clearance of postprandial triglycerides, and a reduced rate of hepatic VLDL triglyceride secretion. In agreement with these findings, adenovirus-mediated gene transfer of apoA-IMilano in apoA-I-/- mice fed western-type diet for 12 weeks resulted in a significant reduction in hepatic triglyceride content and an improvement of hepatic histology and architecture.
In order to evaluate the contribution of HDL quality in the development of the metabolic disturbances described above, we studied LCAT-/- mice which have immature discoidal HDL circulating in the plasma. Similarly to apoA-I-/- mice, in the LCAT-/- group we observed increased diet-induced hepatic triglyceride deposition and impaired hepatic histology and architecture. In contrast hoewever, these mice gained significantly more body weight, compared to the control group though they did not develop disturbances in their plasma glucose metabolism. Mechanistic analyses indicated that LCAT deficiency was associated with enhanced intestinal absorption of dietary triglycerides, accelerated clearance of postprandial triglycerides, and a reduced rate of hepatic very low density lipoprotein triglyceride secretion. No statistical difference in the average daily food consumption between mouse strains was observed. Adenovirus-mediated gene transfer of LCAT in LCAT-/- mice that were fed western-type diet for 12 weeks resulted in a significant reduction in hepatic triglyceride content and a great improvement of hepatic histology and architecture.
Taken together, these data suggested that HDL metabolic pathway is a central modulator of processes associated with diet-induced hepatic lipid deposition and NAFLD development. Furthermore, our results sypport that the the coexistence of reduced and possibly dysfunctional HDL with NAFLD in patients with metabolic syndrome is not a mere coincidence, rather indicates a strong mechanistic link between these two conditions.
In order to study the role of the chylomicron metabolic pathway, we employed apoE-deficient mice, which show a very slow catabolism of dietary lipids. Our data indicate that the apoE-/- mice are resistant to obesity and to diet-induced NAFLD compared to control C57BL/6 mice and they don’t reveal disturbances in the glucose metabolism. In an attempt to identify the molecular basis for this phenomenon biochemical and kinetic analyses revealed that apoE-/- mice displayed a significantly delayed post-prandial triglyceride clearance from their plasma. In contrast to apoE-/- mice, LDLr-/- mice fed western-type diet for 24 weeks developed significant accumulation of hepatic triglycerides and NAFLD suggesting that the apoE-mediated hepatic triglyceride accumulation in mice is independent of the LDLr. Our findings suggest a new role of apoE as key peripheral contributor to hepatic lipid homeostasis and the development of diet-induced NAFLD. Furthermore, they show that the disturbances in the metabolic pathway of chylomicron are related, directly, with the development of NAFLD.
Overall, our findings reinforce our initial hypothesis that the transport of dietary lipids from the intestine to the liver plays a central role to the deposition of triglycerides in the liver and the development of NAFLD.
|
15 |
Regulation of oxidative stress and its modulation by natural health productsSarna, Lindsei January 2013 (has links)
Oxidative stress is characterized by the cellular accumulation of reactive oxygen species (ROS). Increased production of ROS, such as the superoxide anion (O2.-), or a deficiency in their clearance by antioxidant defenses, mediates the cellular pathology. Non-alcoholic fatty liver disease (NAFLD) is a broad spectrum liver disorder commonly manifesting in milieu of the metabolic syndrome. Oxidative stress is an important pathogenic mediator in NAFLD, and in its associated morbidities like atherosclerosis. The objective of my research was to investigate the regulation of oxidative stress and the antioxidant actions of natural health products (NHPs) in the context of NAFLD and its associated disorders. The O2.- generating NADPH oxidase contributes to atherogenesis by facilitating macrophage induced vascular injury. In manuscript I, the plant alkaloid berberine effectively abolished NADPH oxidase mediated O2.- production in lipopolysaccharide stimulated macrophages. Real-time PCR analysis and siRNA transfection studies revealed that berberine mediated its effects through down-regulation of the oxidase’s catalytic subunit gp91phox. Berberine also restored the activity of the O2.- clearing enzyme superoxide dismutase (SOD). High fat diet (HFD) fed rodents are a popular model for investigating NAFLD pathogenesis. In manuscript II, folic acid supplementation significantly reduced HFD-induced hepatic oxidative stress and liver injury in mice. Folic acid decreased NF-kB/DNA binding, down-regulated NADPH oxidase gene expression, and inhibited the oxidase. The antioxidant activities of SOD and catalase were restored and the reduced to oxidized glutathione ratio (GSH:GSSG) was re-established with folic acid supplementation. Folic acid’s hepatoprotective antioxidant effects were associated with a marked improvement in liver histology. Homocysteine (Hcy) levels are perturbed in NAFLD, but the etiology is unclear. In manuscript III, HFD fed mice exhibited decreased Hcy levels. Real-time PCR and Western Immunoblotting analysis revealed that Hcy catabolising enzymes cystathionine-b-synthase (CBS) and cystathionine-g-lyase (CSE) were increased in the liver of these animals. The transsulfuration activities of these enzymes were elevated and coincided with enhanced hepatic hydrogen sulfide biosynthesis. Glutathione was maintained despite increased hepatic oxidative stress. Taken together, NHPs such as berberine and folate, and Hcy catabolising enzymes CBS and CSE, might have therapeutic potential for managing oxidative stress in NAFLD and its associated co-morbidities. / October 2015
|
16 |
Hepatic injury in metabolic syndrome : the role of selenium in models of hepatic injury and healingBaghdadi, Hussam Hussein January 2009 (has links)
Oxidative stress, lipid peroxidation, and endotoxaemia with cytokine-mediated injury have been implicated as factors in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The degree of insulin resistance together with co-existing inadequacies of vital antioxidant defence mechanisms may be important determinants of progression to fibrosis in patients with non-alcoholic steatohepatitis (NASH). Current therapies are targeted at improving insulin sensitivity as well as addressing hepatic repair including anti-inflammatory strategies. Anti-oxidants remedies have also been tested but the role of selenoenzymes with antioxidant action, namely thioredoxin reductase 1 (TR1) and glutathione peroxidase 1 (GPX1) have been ignored. The aim of this thesis is to investigate the role of selenium in the pathophysiology of NAFLD both in vitro and in vivo. The in vitro studies used cell lines representing the cell types involved in the disorder; hepatocytes (C3A line) and hepatic stellate cells (LX-2 line). In order to assess the influence of selenium status and selenoenzymes expression on the pathogenesis of NAFLD it was necessary to develop a culture system which allowed good cell viability in selenium free culture medium. This was achieved by the use of an insulin and transferrin (IT)-supplemented medium which importantly was free of any animal serum additions. Using this IT culture medium, selenium addition (as selenite) produced a significant increase in the expression of GPX1 and TR1 in both C3A and LX2 cells. TR1 and GPX1 were expressed at similar levels in both C3A and LX-2 cells. It was also necessary to develop an in-vitro model for fat loading C3A cells to mimic fatty liver pathophysiology. Two models of fat loading were investigated. One model used lactate, pyruvate, octanoate and ammonium (LPON). LPON has been previously used to increase the functionality of C3A cells but it was observed that fat droplets accumulated in these LPON treated cells. Dissection of the agents in the LPON revealed that octanoate was the factor that increased the triglyceride accumulation. Interestingly, octanoate also increased the expression of TR1 and GPX1, suggesting that it could induce oxidative stress leading to the induction of selenoenzymes to afford a protective defence mechanism. In the second model, oleate and/or palmitate were used to fat-load C3A cells. These cells had significantly higher triglyceride content than the LPON-fat-loaded cells. However, oleate and/or palmitate treatments did not increase the expression of either TR1 or GPX1 in C3A cells suggesting perhaps these cells were not under oxidative stress. LPON and oleate/palmitate were also capable of fat loading LX2 cells. Selenium-supplementation of C3A and LX-2 cells efficiently protected (measured by their lactate dehydrogenase retention) them from oxidative damage induced by t-butylhydroperoxide. This suggests that selenium supplementation through its incorporation into selenoenzymes could protect the cells from the oxidative damage. The role of selenium was also investigated in the regulation of α-1 pro-collagen mRNA expression. In LX-2 cells, the expression of α-1 pro-collagen mRNA was unaffected by the selenium status of the cell. Similarly the selenium status of C3A cells had no effect on modifying α-1 pro-collagen mRNA of LX2 cells when co-culture or conditioned medium experiments were performed. These results suggest that LX-2 cells were already largely activated and at a stage unable to be ameliorated by selenium treatment. In contrast, studies on C3A cells revealed that TGF-β1 (common inducer of α-1 pro-collagen mRNA in hepatic stellate cells) dramatically increased the expression of α-1 pro-collagen mRNA in C3A cells to the levels observed in LX-2 cells. More interestingly, selenium supplementation of C3A cells notably decreased α-1 pro-collagen mRNA expression in response to TGF-1. In the in vivo study, plasma selenium in type 2 diabetics (high risk of developing NAFLD) were inversely related to the body mass index and in most patients selenium levels were below that required to maximally express GPX1 in red cells. Furthermore, type 2 diabetics had lower plasma selenium levels compared to the healthy control group. Collectively, this suggests that in the UK population, obesity is a risk factor for both insulin resistance and decreased selenium status leading to sub-optimal antioxidant protection. In conclusion, this study provides evidence that selenium through increasing the expression of selenoenzymes is beneficial in protecting liver cells from oxidative stress. Furthermore, selenium is capable of suppressing α-1 pro-collagen mRNA expression in hepatocytes although not in activated hepatic stellate cells. Taken together these data support the view that suboptimal selenium intake in the UK may be a risk factor in the pathogenesis of NAFLD.
|
17 |
Non-Alcoholic Fatty Liver Disease Alters the Three Stages of Hepatic Drug ManagementFisher, Craig January 2008 (has links)
In pharmacotherapeutics, the term "correct dosing" is based on the concept that too high a systemic concentration will lead to drug toxicity, while drug levels that are too low may not produce the intended therapeutic effect. Often, the factors determining the ability of a patient to manage a given dose rely on their capacity to efficiently metabolize and eliminate drugs from the body. The liver plays a crucial role in the processing of many clinically relevant drugs via three stages of hepatic drug management. Drugs must first be taken into hepatocytes by uptake transporters. Drugs are then metabolized by phase I and phase II enzymes to make them more manageable. Finally, metabolites are removed from the hepatocyte by efflux transporters either into the bile for elimination or reintroduction to systemic blood. Alterations in one or more of the hepatic drug management stages increase the potential for adverse drug reactions (ADRs).In the United States, ADRs account for between 3%-12% of admissions to hospitals, and approximately 5% of deaths each year. While less than 20% of these cases are due to genetic polymorphisms, the vast majority of ADRs are due to environmental factors including disease. Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of conditions progressing from steatosis to non-alcoholic steatohepatitis (NASH) and often leading to cirrhosis. Presently, NASH patients represent the greatest population of candidates for liver transplant, illustrating the severity as well as the incidence of this disease. Patients with NAFLD are typically treated for co-existing conditions of the metabolic syndrome (i.e. hyperlipidemina or type II diabetes) and therefore represent a distinct population at risk for adverse drug reactions.The following studies show that experimental NAFLD affects both the signal transduction pathways regulating hepatic drug management genes as well as the hepatic uptake transporter function. Additionally, patient livers diagnosed with progressive stages of NAFLD, display altered CYP activity and efflux transporter expression similar to those previously reported in experimental NAFLD. Given that changes observed in experimental NAFLD result in functional changes in hepatic drug management, similar changes observed in patients with this disease suggest an increased risk for ADRs.
|
18 |
Rôle du régulateur du cycle cellulaire p16INK4a dans le développement du diabète de type 2 et dans les maladies métaboliques du foie gras ou NAFLD (Non-Alcoholic Fatty Liver Disease) : rôle de p16INK4a dans le contrôle de la néoglucogenèse hépatique et dans le développement de la stéatose hépatique non alcoolique. / Role of the cell cycle regulator p16INK4a in type 2 diabetes and Non-Alcoholic Fatty Liver Disease development : control of hepatic gluconeogenesis through the the cell cycle regulator p16INK4aHannou, Sarah Anissa 30 April 2014 (has links)
Le diabète de type 2 (T2D) est un trouble métabolique de l’homéostasie du glucose. Il est caractérisé par une hyperglycémie chronique qui résulte en partie d’une production excessive de glucose par le foie conséquence au développement d’une résistance à l’insuline. Le T2D est une pathologie multifactorielle à la fois génétique et environnementale. Récemment des études d’associations de gènes (GWAS) dans différentes cohortes ont mis en évidence une forte corrélation entre le locus CDKN2A et le risque de développement du T2D en se basant sur certains paramètres métaboliques tel que la glycémie à jeun. Le locus CDKN2A code pour des protéines régulatrices du cycle cellulaire dont la protéine p16INK4a. p16INK4a est largement décrite dans la littérature pour son rôle suppresseur de tumeurs et comme marqueur de sénescence, cependant son rôle dans le contrôle de l’homéostasie hépatique du glucose n’a jamais été rapporté. Afin de déterminer le rôle de p16INK4a dans le métabolisme hépatique du glucose, nous avons utilisé in vivo des souris sauvages (p16+/+) et déficientes pour p16INK4a (p16-/-) et in vitro des hépatocytes primaires ainsi que la lignée AML12. Nous avons montrés qu’après un jeune, les souris p16-/- présentent une hypoglycémie moins prononcée qui se traduit par une expression hépatique plus élevée de gènes de la néoglucogenèse tels que PEPCK, G6Pase et PGC1a. De plus, les hépatocytes primaires de souris p16-/- présentent une meilleur réponse au glucagon que ceux des p16+/+. Enfin, nous avons montrés que la diminution d’expression de p16INK4a par siRNA dans les AML12 suffit à induire l’expression des gènes de la néoglucogenèse et potentialise la réponse de ces cellules à différents stimuli gluconéogenique. L’effet observé dépend de l’activation de la voie PKA-CREB-PGC1A. L’ensemble de ces données montrent pour la première fois que p16INK4a pourrait jouer un rôle un cours du développement du T2D. / P16INK4a is a tumor suppressor protein well described as a cell cycle regulator. p16INK4a blocks cyclin D/ cyclin dependent kinase (CDK) 4 activity by binding to the catalytic subunit of CDK4, preventing retinoblastoma protein phosphorylation and subsequently the release of the E2F1 transcription factor. As a consequence; the transcription of genes required for progression to the S phase is restrained. Recently, genome-wide association studies (GWAS) associated the CDKN2A locus, encoding, amongst other genes, p16INK4A, with an increased risk of type 2 diabetes (T2D) development. However, the pathophysiological link between p16INK4a and hepatic glucose homeostasis remains unknown. In this context, we investigated the role of p16INK4a in hepatic glucose metabolism in vivo using p16+/+ and p16-/- mice and in vitro using primary hepatocytes and the AML12 hepatocyte cell line.p16-/- mice exhibited a higher response to fasting as shown by an increased hepatic gluconeogenic gene expression including phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-biphosphatase (F1,6P) and glucose-6-phosphatase (G6Pase). p16-/- mice displayed an enhanced hepatic gluconeogenic activity in vivo upon administration of pyruvate, a gluconeogenic substrate. Consistent with this, in vitro data show that p16-/- primary hepatocytes display an enhanced gluconeogenic response to glucagon. In addition, knock down of p16INK4a by siRNA in AML12 cells increased gluconeogenic gene expression. These effects were associated with an increased activity of the PKA-CREB signaling pathway which leads to increased PPARg coactivator 1 (PGC1)α expression, a key transcriptional co-activator that regulates genes involved in energy metabolism. These findings describe a new function for p16INK4a as an actor in the hepatic adaptation to metabolic stress and suggest that p16INK4a could play a role during T2D development .
|
19 |
The Effect of Alcohol Consumption on Adipokine SecretionDeGroat, Ashley 01 May 2018 (has links)
Alcoholic Fatty Liver Disease (AFLD) is caused by excessive alcohol consumption and is a leading cause of liver related mortalities, with currently no treatments available. The goal of this project was to establish the effect of alcohol consumption on adipose tissue-derived secreted factors, adiponectin and C1q TNF Related Proteins 1-3 (CTRP1-3). We propose that excessive alcohol consumption will reduce circulating levels of adiponectin and CTRPs 1-3. Mice were fed a Lieber-Decarli control or alcohol diet for 10-days with a gavage (NIAAA model) or 6-weeks with no gavage (chronic model). Serum and adipose tissue were collected and CTRPs 1-3 and adiponectin levels were examined by immunoblot analysis. Our results indicate that long-term alcohol consumption effects adipokine secretion in a sex specific manner. Further research will be needed to explore the physiological relevance of these findings, to determine if these changes are beneficial to combat the negative effects of excessive alcohol consumption.
|
20 |
Diagnosis of non-alcoholic fatty liver disease in obese adolescents using non-invasive methodsLara-Castor, Laura 09 March 2017 (has links)
OBJECTIVE. To identify clinical, socio-demographic, dietary and biological markers to be used in a non-invasive and cost-effective clinical tool for screening for non-alcoholic fatty liver disease (NAFLD) in obese adolescents.
METHODS. We conducted a cross-sectional analysis using baseline data from 77 obese adolescents enrolled in a drug trial for the Glaser Pediatric Research Network, between October 2003 and August 2007. NAFLD was defined as the presence of fatty liver infiltration assessed by computed tomography. Receiver operation characteristic (ROC) analyses were performed to identify variables with the highest area under the curve (AUC) for NAFLD. Serum biomarkers were dichotomized using sensitivity analyses to identify the best cutoff point for NAFLD. Multiple logistic regression models were created to predict prevalent NAFLD.
RESULTS. Serum triglycerides was identified as the best biomarker for NAFLD (AUC 0.790; pseudo R2 0.235). Additional adjustment for sex, age and Tanner stage improved the AUC to 0.846 and the pseudo R2 to 0.290. We then explored adding a simple biochemical marker for predicting NAFLD (HOMA-B, ALT or glutamate) and found that HOMA-B led to greater improvement in AUC, ALT to a greater improvement in sensitivity and glutamate to a greater improvement in the pseudo R2. Thus, all three factors individually improved overall model performance to some degree and inclusion of all three led to an AUC=0.907 and pseudo R2=0.433. Our second objective was to develop a more complex exploratory model starting with the inclusion of important clinical predictors (triglycerides, sex, age, Tanner stage, SBP, BMI, waist circumference); this yielded an AUC of 0.871 and pseudo R2 of 0.342. Further adjustment for HOMA-B, ALT and glutamate gave an AUC=0.913 and pseudo R2=0.497.
CONCLUSION. Simple clinical and biochemical factors may be used to screen for prevalent NAFLD. Our simplest clinically relevant model using triglycerides, age, sex and Tanner stage provided a reasonable screening tool for NAFLD in obese adolescents. A second more complex model that warrants further testing includes triglycerides, sex, age, Tanner stage, SPB, BMI, waist circumference, HOMA-B, ALT and glutamate. In this study, this model was more accurate for detecting undiagnosed cases of NAFLD in this pediatric population.
|
Page generated in 0.0748 seconds