Spelling suggestions: "subject:"aldosterone synthase"" "subject:"aldosterones synthase""
1 |
Role of Circulating Angiotensin II in Activation of Aldosterone production in the Central Nervous SystemAhmadi, Sara 30 June 2011 (has links)
Elevated circulating Ang II activates neurons in the forebrain cardiovascular regulatory areas to cause sympatho-excitation and hypertension. We hypothesized that circulating Ang II causes neuronal activation in the SFO and thereby activates efferent pathways to the PVN, and chronically causes activation of aldosterone production in magnocellular neurons in PVN and SON, which amplifies neuronal activation in the PVN and central sympatho-excitatory pathways. The aim of the present study was to determine the pattern of neuronal activation in forebrain nuclei by circulating Ang II and to elucidate where in the hypothalamus Ang II may stimulate aldosterone biosynthesis. Dose related effects of circulating Ang II on BP were first assessed. Wistar rats instrumented with telemetry probes were infused subcutaneously with Ang II 150 and 500 ng/kg/min for 14 days. The subcutaneous infusion of Ang II at 150 ng/kg/min increased blood pressure gradually up to 20 mmHg and at 500 ng/kg/min up to 60 mmHg. Ang II at 500 ng/kg/min increased plasma Ang II by 4-fold. To assess effects of circulating Ang II on CNS pathways, Wistar rats were implanted subcutaneously with minipumps infusing 150 and 500 ng/kg/min Ang II for 1, 4 and 14 days. Three patterns of neuronal activation were observed by sc infusion of Ang II. The SFO was activated during the first day and remained activated for 4 days, but at 14 days showed diminished activation. MnPO did not show significant activation during the first day but, after several days the activation was high and then less by 14 days. Parvocellular PVN (pPVN), magnocellular PVN (mPVN) and SON showed an initial activation that increased over time. Chronic intracerebroventricular infusion of an aldosterone synthase inhibitor or a mineralocorticoid receptor (MR) blocker attenuated the increase in Fra expression in PVN but not SON, and prevented the decrease in SFO after 14 days infusion of Ang II. A significant increase in mRNA expression of steroidogenic acute regulatory protein (StAR), a rate limiting enzyme in aldosterone production was found in glia cells of PVN and SFO assessed by rt-PCR after 3 days subcutaneous infusion of Ang II at 500 ng/kg/min. Total expression of aldosterone synthase (CYP11B2) mRNA was increased in SFO, MnPO, SON and PVN after 3 days of infusion of Ang II. After 14 days no significant changes were observed in the expression of StAR or CYP11B2 mRNA. In comparison, in adrenal StAR mRNA expression increased after 3 days but no longer after 14 days. In contrast, CYP11B2 mRNA expression in adrenal increased after both 3 and 14 days of infusion. These findings may support our hypothesis that chronic elevation of circulating Ang II increases neuronal activity in CVOs, presumably leading to activation of the PVN and SON to induce an increase in aldosterone production in magnocelular PVN and SON. In the second phase activation of CVOs appears to diminish, but an aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
|
2 |
Role of Circulating Angiotensin II in Activation of Aldosterone production in the Central Nervous SystemAhmadi, Sara 30 June 2011 (has links)
Elevated circulating Ang II activates neurons in the forebrain cardiovascular regulatory areas to cause sympatho-excitation and hypertension. We hypothesized that circulating Ang II causes neuronal activation in the SFO and thereby activates efferent pathways to the PVN, and chronically causes activation of aldosterone production in magnocellular neurons in PVN and SON, which amplifies neuronal activation in the PVN and central sympatho-excitatory pathways. The aim of the present study was to determine the pattern of neuronal activation in forebrain nuclei by circulating Ang II and to elucidate where in the hypothalamus Ang II may stimulate aldosterone biosynthesis. Dose related effects of circulating Ang II on BP were first assessed. Wistar rats instrumented with telemetry probes were infused subcutaneously with Ang II 150 and 500 ng/kg/min for 14 days. The subcutaneous infusion of Ang II at 150 ng/kg/min increased blood pressure gradually up to 20 mmHg and at 500 ng/kg/min up to 60 mmHg. Ang II at 500 ng/kg/min increased plasma Ang II by 4-fold. To assess effects of circulating Ang II on CNS pathways, Wistar rats were implanted subcutaneously with minipumps infusing 150 and 500 ng/kg/min Ang II for 1, 4 and 14 days. Three patterns of neuronal activation were observed by sc infusion of Ang II. The SFO was activated during the first day and remained activated for 4 days, but at 14 days showed diminished activation. MnPO did not show significant activation during the first day but, after several days the activation was high and then less by 14 days. Parvocellular PVN (pPVN), magnocellular PVN (mPVN) and SON showed an initial activation that increased over time. Chronic intracerebroventricular infusion of an aldosterone synthase inhibitor or a mineralocorticoid receptor (MR) blocker attenuated the increase in Fra expression in PVN but not SON, and prevented the decrease in SFO after 14 days infusion of Ang II. A significant increase in mRNA expression of steroidogenic acute regulatory protein (StAR), a rate limiting enzyme in aldosterone production was found in glia cells of PVN and SFO assessed by rt-PCR after 3 days subcutaneous infusion of Ang II at 500 ng/kg/min. Total expression of aldosterone synthase (CYP11B2) mRNA was increased in SFO, MnPO, SON and PVN after 3 days of infusion of Ang II. After 14 days no significant changes were observed in the expression of StAR or CYP11B2 mRNA. In comparison, in adrenal StAR mRNA expression increased after 3 days but no longer after 14 days. In contrast, CYP11B2 mRNA expression in adrenal increased after both 3 and 14 days of infusion. These findings may support our hypothesis that chronic elevation of circulating Ang II increases neuronal activity in CVOs, presumably leading to activation of the PVN and SON to induce an increase in aldosterone production in magnocelular PVN and SON. In the second phase activation of CVOs appears to diminish, but an aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
|
3 |
Role of Circulating Angiotensin II in Activation of Aldosterone production in the Central Nervous SystemAhmadi, Sara 30 June 2011 (has links)
Elevated circulating Ang II activates neurons in the forebrain cardiovascular regulatory areas to cause sympatho-excitation and hypertension. We hypothesized that circulating Ang II causes neuronal activation in the SFO and thereby activates efferent pathways to the PVN, and chronically causes activation of aldosterone production in magnocellular neurons in PVN and SON, which amplifies neuronal activation in the PVN and central sympatho-excitatory pathways. The aim of the present study was to determine the pattern of neuronal activation in forebrain nuclei by circulating Ang II and to elucidate where in the hypothalamus Ang II may stimulate aldosterone biosynthesis. Dose related effects of circulating Ang II on BP were first assessed. Wistar rats instrumented with telemetry probes were infused subcutaneously with Ang II 150 and 500 ng/kg/min for 14 days. The subcutaneous infusion of Ang II at 150 ng/kg/min increased blood pressure gradually up to 20 mmHg and at 500 ng/kg/min up to 60 mmHg. Ang II at 500 ng/kg/min increased plasma Ang II by 4-fold. To assess effects of circulating Ang II on CNS pathways, Wistar rats were implanted subcutaneously with minipumps infusing 150 and 500 ng/kg/min Ang II for 1, 4 and 14 days. Three patterns of neuronal activation were observed by sc infusion of Ang II. The SFO was activated during the first day and remained activated for 4 days, but at 14 days showed diminished activation. MnPO did not show significant activation during the first day but, after several days the activation was high and then less by 14 days. Parvocellular PVN (pPVN), magnocellular PVN (mPVN) and SON showed an initial activation that increased over time. Chronic intracerebroventricular infusion of an aldosterone synthase inhibitor or a mineralocorticoid receptor (MR) blocker attenuated the increase in Fra expression in PVN but not SON, and prevented the decrease in SFO after 14 days infusion of Ang II. A significant increase in mRNA expression of steroidogenic acute regulatory protein (StAR), a rate limiting enzyme in aldosterone production was found in glia cells of PVN and SFO assessed by rt-PCR after 3 days subcutaneous infusion of Ang II at 500 ng/kg/min. Total expression of aldosterone synthase (CYP11B2) mRNA was increased in SFO, MnPO, SON and PVN after 3 days of infusion of Ang II. After 14 days no significant changes were observed in the expression of StAR or CYP11B2 mRNA. In comparison, in adrenal StAR mRNA expression increased after 3 days but no longer after 14 days. In contrast, CYP11B2 mRNA expression in adrenal increased after both 3 and 14 days of infusion. These findings may support our hypothesis that chronic elevation of circulating Ang II increases neuronal activity in CVOs, presumably leading to activation of the PVN and SON to induce an increase in aldosterone production in magnocelular PVN and SON. In the second phase activation of CVOs appears to diminish, but an aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
|
4 |
Intestinal barriers to oral drug absorption : cytochrome P450 3A and ABC-transport proteins /Engman, Helena, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2003. / Härtill 4 uppsatser.
|
5 |
Role of Circulating Angiotensin II in Activation of Aldosterone production in the Central Nervous SystemAhmadi, Sara January 2011 (has links)
Elevated circulating Ang II activates neurons in the forebrain cardiovascular regulatory areas to cause sympatho-excitation and hypertension. We hypothesized that circulating Ang II causes neuronal activation in the SFO and thereby activates efferent pathways to the PVN, and chronically causes activation of aldosterone production in magnocellular neurons in PVN and SON, which amplifies neuronal activation in the PVN and central sympatho-excitatory pathways. The aim of the present study was to determine the pattern of neuronal activation in forebrain nuclei by circulating Ang II and to elucidate where in the hypothalamus Ang II may stimulate aldosterone biosynthesis. Dose related effects of circulating Ang II on BP were first assessed. Wistar rats instrumented with telemetry probes were infused subcutaneously with Ang II 150 and 500 ng/kg/min for 14 days. The subcutaneous infusion of Ang II at 150 ng/kg/min increased blood pressure gradually up to 20 mmHg and at 500 ng/kg/min up to 60 mmHg. Ang II at 500 ng/kg/min increased plasma Ang II by 4-fold. To assess effects of circulating Ang II on CNS pathways, Wistar rats were implanted subcutaneously with minipumps infusing 150 and 500 ng/kg/min Ang II for 1, 4 and 14 days. Three patterns of neuronal activation were observed by sc infusion of Ang II. The SFO was activated during the first day and remained activated for 4 days, but at 14 days showed diminished activation. MnPO did not show significant activation during the first day but, after several days the activation was high and then less by 14 days. Parvocellular PVN (pPVN), magnocellular PVN (mPVN) and SON showed an initial activation that increased over time. Chronic intracerebroventricular infusion of an aldosterone synthase inhibitor or a mineralocorticoid receptor (MR) blocker attenuated the increase in Fra expression in PVN but not SON, and prevented the decrease in SFO after 14 days infusion of Ang II. A significant increase in mRNA expression of steroidogenic acute regulatory protein (StAR), a rate limiting enzyme in aldosterone production was found in glia cells of PVN and SFO assessed by rt-PCR after 3 days subcutaneous infusion of Ang II at 500 ng/kg/min. Total expression of aldosterone synthase (CYP11B2) mRNA was increased in SFO, MnPO, SON and PVN after 3 days of infusion of Ang II. After 14 days no significant changes were observed in the expression of StAR or CYP11B2 mRNA. In comparison, in adrenal StAR mRNA expression increased after 3 days but no longer after 14 days. In contrast, CYP11B2 mRNA expression in adrenal increased after both 3 and 14 days of infusion. These findings may support our hypothesis that chronic elevation of circulating Ang II increases neuronal activity in CVOs, presumably leading to activation of the PVN and SON to induce an increase in aldosterone production in magnocelular PVN and SON. In the second phase activation of CVOs appears to diminish, but an aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
|
6 |
Le rat ZSF1 : un modèle de maladie cardio-rénale associée au syndrome métabolique : Caractérisation par l'utilisation d'un antioxydant, d'un antagoniste des récepteurs des minéralocorticoïdes et d'un inhibiteur de l'aldostérone synthase / ZSF1 rat : a model of chronic cardiac and renal diseases in the context of metabolic syndrome : Characterization with anti-oxidant, mineralocorticoid receptor antagonist and aldosterone synthase inhibitorRiboulet, William 18 May 2015 (has links)
Chez les patients présentant un syndrome métabolique, le développement des comorbidités cardiaques et rénales associées au diabète de type 2 sont liées à des altérations au niveau vasculaire. Afin d’évaluer l’effet protecteur rénal et cardiaque de nouvelles molécules, le modèle de rat Zucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) semblait approprié. Cependant, son développement lent et les impacts rénaux et cardiaques modestes en limitaient son utilisation. Notre but fut d’exacerber ces altérations par deux méthodes. Nous avons d’abord effectué une néphrectomie unilatérale chez le rat ZSF1 et évalué l’évolution des fonctions cardiaque et rénale en fonction de l’âge. Seule une exacerbation de la dysfonction rénale a été mise en évidence. Néanmoins nous avons pu démontrer l’effet protecteur rénal de l’inhibiteur de l’enzyme de conversion de l’angiotensine lisinopril ainsi que d’un composé antioxydant, le bardoxolone. Notre seconde stratégie a consisté à infuser de l’angiotensine II (AngII) à des rats ZSF1. L’hypertension déjà existante dans ce modèle a été fortement accrue, et le niveau d’aldostérone circulante a été significativement augmenté. Dans ce contexte, les fonctions cardiaque et rénale ont été dégradées de manière importante. Enfin nous avons montré que dans ce modèle, un inhibiteur de l’aldostérone synthase induisait une meilleure protection rénale que l’antagoniste des récepteurs à l’aldostérone éplérénone. Nous avons donc mis en évidence que le rat ZSF1-AngII est un modèle de dysfonction cardio-rénale permettant d’évaluer l’effet protecteur de composés sur les fonctions rénale et cardiaque, dans un contexte de syndrome métabolique / In the context of metabolic syndrome, development of Type 2 Diabetes is associated with (and influenced by) cardiac and renal comorbidities linked to micro- and macro-vasculature alterations. To assess the efficacy of new compounds on targeted organs in the context of metabolic syndrome, the Zucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) rat model could be suitable assuming cardiorenal alterations would develop in a short timeframe. Actually, the ZSF1 rat model recapitulates features of human metabolic syndrome, but develops relatively late (1year-time) and moderate cardiac and renal dysfunctions. The aim of our work was to exacerbate cardiorenal impairments in terms of onset and extent. Two options were explored. On one hand, unilateral nephrectomy was performed in ZSF1 rats, and cardiac and renal functions were longitudinally assessed. This surgical insult only significantly deteriorated renal function, which was prevented by standard of care, lisinopril and new renal protective agent, bardoxolone. On the other hand, subcutaneous infusion of angiotensin II (AngII) was used in the aim to induce hemodynamic and hormonal stress and thus to enhance cardiorenal impairments. AngII-infused ZSF1 rats displayed significant hypertension and increased levels of circulating aldosterone. Moreover, renal and cardiac functions dropped, concomitantly. We showed in this model that an aldosterone synthase inhibitor induced overall better renal protection than the mineralocorticoid receptor antagonist eplerenone. Our data showed that ZSF1-AngII rat is a suitable model to evaluate the cardio and renoprotective effects of drugs in the context of metabolic syndrome
|
7 |
Identification de nouvelles options thérapeutiques et diagnostiques dans l'hyperaldostéronisme primaire / Identification of new treatment and diagnostic options in Primary AldosteronismAmar, Laurence 15 November 2012 (has links)
L’hyperaldostéronisme primaire [HAP] résulte d’une hypersécrétion d’aldostérone d’origine surrénale. La compréhension de la pathogénie de cette maladie, dont la prévalence est estimée à 10% de la population hypertendue, est essentielle pour le développement de nouveaux outils diagnostiques et thérapeutiques. Dans ce contexte, ce travail de doctorat avait pour but d’identifier de nouvelles orientations thérapeutiques en testant un inhibiteur de l’aldostérone synthase et de rechercher de nouveaux marqueurs diagnostiques par l’étude du profil d’expression des microARN [miRs]. Dans une étude de phase II, 14 patients présentant un HAP ont reçu un inhibiteur de l’aldostérone synthase : le LCI699 pendant 4 semaines. Nous avons ainsi pu montrer que le LCI699 permet de diminuer les concentrations d’aldostérone de 70 à 80% et de normaliser la kaliémie chez tous les patients. En revanche, il n’a qu’un effet modéré sur la pression artérielle et sur l’élévation des concentrations de rénine, et n’est que partiellement sélectif pour l’aldostérone synthase. De plus son efficacité est moindre que celle de l’éplérénone, antagoniste minéralocorticoide administré aux mêmes patients au décours du LCI699. Nous avons ensuite étudié l’expression de 754 miRs dans des adénomes produisant de l’aldostérone [APA] et dans des surrénales contrôles. L’hypothèse était qu’une dérégulation de leur expression pouvait être impliquée dans la tumorigénèse et la surproduction d’aldostérone. L’objectif secondaire était d’identifier des miRs utilisables en tant que biomarqueurs. Cette analyse par carte microfluidique a révélé que 27 miRs sont significativement sous exprimés dans les APA et un seul miR est surexprimé. L’expression différentielle de deux de ces miRs : miR 137 et miR 375 a pu être confirmée dans une cohorte de validation de 36 APA: Des résultats préliminaires in vitro indiquent que le miR 375 pourrait induire une diminution de la synthèse d’aldostérone. Enfin, l’analyse de l’expression de ces miRs dans le plasma a permis de mettre en évidence une sous-expression du miR 375 chez les patients atteints d’HAP en comparaison à des sujets sains. En conclusion, le blocage de la biosynthèse de l’aldostérone représente une nouvelle option thérapeutiques, cependant il est nécessaire de développer une seconde génération de molécules : plus puissantes et plus sélectives. Les analyses effectuées sur les APA ouvrent de nouvelles perspectives pour l’identification de nouveaux biomarqueurs tels que les miRs circulants / Primary aldosteronism [PA] results from the hypersecretion of aldosterone by the adrenals. Understanding the pathogenesis of the disease is essential for identifying new diagnostic and therapeutic tools. In this context the purpose of my PHD was to investigate the effects of an aldosterone synthase inhibitor and second to investigate new diagnostic options by the extensive study of microRNA [miRNA]. In a phase II clinical study, 14 patients with PA were administered an aldosterone synthase inhibitor: LCI699. Four weeks of treatment lead to a 70 to 80% decrease in aldosterone concentration, associated with the cure of hypokalemia. However, there was only a mild effect on blood pressure and volemia (reflected by renin concentration). In addition, these results demonstrated an incomplete selectivity of LCI699 for aldosterone synthase in vivo, and showed that LCI699 is less potent than the blocker of the mineralocorticoid receptor: eplerenone . We also characterized the miRNA profile of Aldosterone producing adenomas [APA]. The hypothesis was that a dysregulation of the expression of miRNA could induce tumorigenesis and increase the production of aldosterone. The secondary aim of the study was to identify miRNA that could be measured in plasma as biomarkers. miRNA profiling of 754 miRNA using quantitative PCR Low Density array, revealed 28 miRNA whose expression was significantly different in APA. The differential expression of two miRNA: miRNA 137 and miRNA 375 was confirmed in a validation cohort of 36 APA. Preliminary in vitro studies showed that up-regulation of intracellular levels of miR 375 may reduce aldosterone secretion in H295R cells. Lastly, circulating plasma levels of miR 375 are differentially expressed between patients with PA and healthy volunteers. In conclusion, the blocking of the aldosterone pathway in hypertensive patients is a novel therapeutic option but second-generation drugs more potent and more selective of aldosterone synthase are required. Profiling miRNA in APA offers new prospect for the development of biomarkers, such as measuring circulating miRNA in plasma
|
8 |
Aldosteron syntáza u arteriální hypertenze a možný vliv polymorfismu jejího genu na hypertrofii levé komory srdeční / Aldosterone synthase in arterial hypertension and possible influence of its genenetic polymorphism on left ventricular hypertrophyHeller, Samuel January 2013 (has links)
Part I. The aldosterone synthase gene (CYP11B2) polymorphism T-344C in blood pressure and left ventricular hypertrophy. BACKGROUND: Aldosterone is a key cardovascular hormone, it significantly influences volume, pressure and electrolyte balance. Aldosterone plays an important role in development of left ventricular (LV) hypertrophy and myocardial fibrosis. The aldosterone synthase gene (CYP11B2) is an important candidate gene region in essential hypertension. DESIGN AND METHODS: We assessed the influence of the T-344C polymorphism of aldosterone synthase - the rate-limiting enzyme in aldosterone biosynthesis - on the structure of the left ventricle in young normotensive men. The population included 113 normotensive mid-European Caucasian men aged 18-40 years (mean 27 +/- 5 years). We also studied the association of -344T/C polymorphism of the CYP11B2 gene with the presence and severity of hypertension in 369 individuals, of whom 213 were hypertensive patients (139 controlled hypertensive, 74 resistant hypertensive) and 156 were healthy normotensive subjects. The genotype was assessed using polymerase chain reaction with subsequent cleavage with restriction enzyme HAEIII (restriction fragment length polymorphism method) and visualization with ethidium bromide. Plasma renin activity (PRA) and plasma...
|
Page generated in 0.342 seconds