Spelling suggestions: "subject:"algèbre extérieures"" "subject:"algèbre extérieur""
1 |
Stabilité des ondes solitairesChardard, Frédéric 15 May 2009 (has links) (PDF)
Cette thèse porte sur la stabilité des ondes solitaires et plus précisément sur les applications de l'indice de Maslov au problème de la stabilité spectrale des ondes solitaires unidimensionnelles. Nous montrons comment la stabilité peut être liée à l'étude d'une famille d'équations aux dérivées ordinaires linéaires hamiltoniennes. Il est alors possible de définir un indice de Maslov pour les ondes périodiques et les ondes solitaires. Nous calculons ensuite la limite de l'indice de Maslov d'une suite d'ondes périodiques approchant une onde solitaire et la comparons à l'indice de Maslov de l'onde solitaire. Nous décrivons un algorithme utilisant l'algèbre extérieure pour calculer cet indice de Maslov à la fois dans le cas périodique et le cas onde solitaire. Nous appliquons cette approche aux ondes périodiques et aux ondes solitaires de l'équation de Kawahara ainsi qu'aux ondes solitaires apparaissant dans un modèle pour l'interaction entre ondes longues et ondes courtes. Enfin, nous examinons la stabilité des ondes stationnaires apparaissant dans l'équation de Korteweg-de Vries avec forçage en utilisant une méthode légèrement différente.
|
2 |
Algèbre des invariants relatifs pour les groupes de réflexion- catégorie stableBeck, Vincent 19 November 2008 (has links) (PDF)
Cette thèse est composée de deux parties indépendantes et d'une annexe. Le thème principal de la première partie tourne autour des groupes de réflexions tandis que la deuxième partie aborde la notion de catégorie stable. L'annexe s'attarde sur les conventions de signes dans les catégories de complexes. <br /><br />Dans la première partie, on considère un groupe de réflexion G agissant sur l'espace vectoriel V dans sa représentation de réflexions. On étudie alors la composante isotypique relativement à un caractère linéaire de G de l'algèbre produit tensorielle de l'algèbre symétrique du dual de V et de l'algèbre extérieure d'une représentation de dimension finie de G. On construit une structure d'algèbre sur cette composante isotypique. On montre aussi que la structure d'algèbre construite est en fait une structure d'algèbre extérieure. On termine cette partie en illustrant ces résultats pour quelques groupes de réflexions particuliers.<br /><br />La deuxième partie est consacrée à la généralisation d'un théorème de Rickard. Lorsque M est un foncteur ayant un adjoint à droite et à gauche, on définit la notion de catégorie M-stable d'une catégorie abélienne ou triangulée. La catégorie M-stable hérite d'une structure de catégorie triangulée. Dans le cas abélien, la catégorie M-stable est aussi, de façon analogue à la catégorie stable usuelle, un quotient d'une catégorie M-dérivée.
|
Page generated in 0.0542 seconds