• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réhaussement d'une séquence échographique par filtrage non-linéaire spatio-temporel

Levac, Éric January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

TONGA : un algorithme de gradient naturel pour les problèmes de grande taille

Manzagol, Pierre-Antoine January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
3

TONGA : un algorithme de gradient naturel pour les problèmes de grande taille

Manzagol, Pierre-Antoine January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
4

Apprentissage automatique pour la prise de décisions / Machine learning for decisions-making under uncertainty

Sani, Amir 12 May 2015 (has links)
La prise de décision stratégique concernant des ressources de valeur devrait tenir compte du degré d'aversion au risque. D'ailleurs, de nombreux domaines d'application mettent le risque au cœur de la prise de décision. Toutefois, ce n'est pas le cas de l'apprentissage automatique. Ainsi, il semble essentiel de devoir fournir des indicateurs et des algorithmes dotant l'apprentissage automatique de la possibilité de prendre en considération le risque dans la prise de décision. En particulier, nous souhaiterions pouvoir estimer ce dernier sur de courtes séquences dépendantes générées à partir de la classe la plus générale possible de processus stochastiques en utilisant des outils théoriques d'inférence statistique et d'aversion au risque dans la prise de décision séquentielle. Cette thèse étudie ces deux problèmes en fournissant des méthodes algorithmiques prenant en considération le risque dans le cadre de la prise de décision en apprentissage automatique. Un algorithme avec des performances de pointe est proposé pour une estimation précise des statistiques de risque avec la classe la plus générale de processus ergodiques et stochastiques. De plus, la notion d'aversion au risque est introduite dans la prise de décision séquentielle (apprentissage en ligne) à la fois dans les jeux de bandits stochastiques et dans l'apprentissage séquentiel antagoniste. / Strategic decision-making over valuable resources should consider risk-averse objectives. Many practical areas of application consider risk as central to decision-making. However, machine learning does not. As a result, research should provide insights and algorithms that endow machine learning with the ability to consider decision-theoretic risk. In particular, in estimating decision-theoretic risk on short dependent sequences generated from the most general possible class of processes for statistical inference and through decision-theoretic risk objectives in sequential decision-making. This thesis studies these two problems to provide principled algorithmic methods for considering decision-theoretic risk in machine learning. An algorithm with state-of-the-art performance is introduced for accurate estimation of risk statistics on the most general class of stationary--ergodic processes and risk-averse objectives are introduced in sequential decision-making (online learning) in both the stochastic multi-arm bandit setting and the adversarial full-information setting.
5

Determination of software quality through a generic model

Mehio, Nouha January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
6

A Unified View of Local Learning : Theory and Algorithms for Enhancing Linear Models / Une Vue Unifiée de l'Apprentissage Local : Théorie et Algorithmes pour l'Amélioration de Modèles Linéaires

Zantedeschi, Valentina 18 December 2018 (has links)
Dans le domaine de l'apprentissage machine, les caractéristiques des données varient généralement dans l'espace des entrées : la distribution globale pourrait être multimodale et contenir des non-linéarités. Afin d'obtenir de bonnes performances, l'algorithme d'apprentissage devrait alors être capable de capturer et de s'adapter à ces changements. Même si les modèles linéaires ne parviennent pas à décrire des distributions complexes, ils sont réputés pour leur passage à l'échelle, en entraînement et en test, aux grands ensembles de données en termes de nombre d'exemples et de nombre de fonctionnalités. Plusieurs méthodes ont été proposées pour tirer parti du passage à l'échelle et de la simplicité des hypothèses linéaires afin de construire des modèles aux grandes capacités discriminatoires. Ces méthodes améliorent les modèles linéaires, dans le sens où elles renforcent leur expressivité grâce à différentes techniques. Cette thèse porte sur l'amélioration des approches d'apprentissage locales, une famille de techniques qui infère des modèles en capturant les caractéristiques locales de l'espace dans lequel les observations sont intégrées.L'hypothèse fondatrice de ces techniques est que le modèle appris doit se comporter de manière cohérente sur des exemples qui sont proches, ce qui implique que ses résultats doivent aussi changer de façon continue dans l'espace des entrées. La localité peut être définie sur la base de critères spatiaux (par exemple, la proximité en fonction d'une métrique choisie) ou d'autres relations fournies, telles que l'association à la même catégorie d'exemples ou un attribut commun. On sait que les approches locales d'apprentissage sont efficaces pour capturer des distributions complexes de données, évitant de recourir à la sélection d'un modèle spécifique pour la tâche. Cependant, les techniques de pointe souffrent de trois inconvénients majeurs :ils mémorisent facilement l'ensemble d'entraînement, ce qui se traduit par des performances médiocres sur de nouvelles données ; leurs prédictions manquent de continuité dans des endroits particuliers de l'espace ; elles évoluent mal avec la taille des ensembles des données. Les contributions de cette thèse examinent les problèmes susmentionnés dans deux directions : nous proposons d'introduire des informations secondaires dans la formulation du problème pour renforcer la continuité de la prédiction et atténuer le phénomène de la mémorisation ; nous fournissons une nouvelle représentation de l'ensemble de données qui tient compte de ses spécificités locales et améliore son évolutivité. Des études approfondies sont menées pour mettre en évidence l'efficacité de ces contributions pour confirmer le bien-fondé de leurs intuitions. Nous étudions empiriquement les performances des méthodes proposées tant sur des jeux de données synthétiques que sur des tâches réelles, en termes de précision et de temps d'exécution, et les comparons aux résultats de l'état de l'art. Nous analysons également nos approches d'un point de vue théorique, en étudiant leurs complexités de calcul et de mémoire et en dérivant des bornes de généralisation serrées. / In Machine Learning field, data characteristics usually vary over the space: the overall distribution might be multi-modal and contain non-linearities.In order to achieve good performance, the learning algorithm should then be able to capture and adapt to these changes. Even though linear models fail to describe complex distributions, they are renowned for their scalability, at training and at testing, to datasets big in terms of number of examples and of number of features. Several methods have been proposed to take advantage of the scalability and the simplicity of linear hypotheses to build models with great discriminatory capabilities. These methods empower linear models, in the sense that they enhance their expressive power through different techniques. This dissertation focuses on enhancing local learning approaches, a family of techniques that infers models by capturing the local characteristics of the space in which the observations are embedded. The founding assumption of these techniques is that the learned model should behave consistently on examples that are close, implying that its results should also change smoothly over the space. The locality can be defined on spatial criteria (e.g. closeness according to a selected metric) or other provided relations, such as the association to the same category of examples or a shared attribute. Local learning approaches are known to be effective in capturing complex distributions of the data, avoiding to resort to selecting a model specific for the task. However, state of the art techniques suffer from three major drawbacks: they easily memorize the training set, resulting in poor performance on unseen data; their predictions lack of smoothness in particular locations of the space;they scale poorly with the size of the datasets. The contributions of this dissertation investigate the aforementioned pitfalls in two directions: we propose to introduce side information in the problem formulation to enforce smoothness in prediction and attenuate the memorization phenomenon; we provide a new representation for the dataset which takes into account its local specificities and improves scalability. Thorough studies are conducted to highlight the effectiveness of the said contributions which confirmed the soundness of their intuitions. We empirically study the performance of the proposed methods both on toy and real tasks, in terms of accuracy and execution time, and compare it to state of the art results. We also analyze our approaches from a theoretical standpoint, by studying their computational and memory complexities and by deriving tight generalization bounds.
7

Algorithms for Deterministic Parallel Graph Exploration

Pajak, Dominik 13 June 2014 (has links) (PDF)
Nous étudions dans cette thèse le problème de l'exploration parallèle d'un graphe à l'aide des multiples, synchronisés et mobiles agents. Chaque agent est une entité individuelle qui peut, indépendamment des autres agents, visitez les sommets du graphe ou parcourir ses arêtes. Le but de ensemble des agents est de visiter tous les sommets de graphe. Nous étudions d'abord l'exploration du graphe dans un modèle où chaque agent est équipé de mémoire interne, mais les nœuds n'ont pas de mémoire. Dans ce modèle les agents sont autorisés à communiquer entre eux en échangeant des messages. Nous présentons des algorithmes qui s'exécutent dans un minimum de temps possible pour polynomiale nombre d'agents (polynomiale en nombre de sommets du graphe). Nous étudions aussi quelle est l'impacte de différent méthodes des communications. Nous étudions des algorithmes où les agents peuvent se communiquer à distance arbitraire, mais aussi où communication est possible seulement entre les agents situés dans le même sommet. Dans les deux cas nous présentons des algorithmes efficaces. Nous avons aussi obtenu des limites inférieures qui correspondent bien à la performance des algorithmes. Nous considérons également l'exploration de graphe en supposant que les mouvements des agents sont déterminés par le soi-disant rotor-router mécanisme. Du point de vue d'un sommet fixé, le rotor- router envoie des agents qui visitent les sommet voisins dans un mode round-robin. Nous étudions l'accélération défini comme la proportion entre le pire des cas de l'exploration d'un agent unique et des plusieurs agents. Pour générales graphes, nous montrerons que le gain de vitesse en cas de multi-agent rotor-router est toujours entre fonction logarithmique et linéaire du nombre d'agents. Nous présentons également des résultats optimaux sur l'accélération de multi-agent rotor-router pour cycles, expanseurs, graphes aléatoires, cliques, tores de dimension fixé et une analyse presque optimale pour hypercubes. Finalement nous considérons l'exploration sans collision, où chaque agent doit explorer le graphe de manière indépendante avec la contrainte supplémentaire que deux agents ne peuvent pas occuper le même sommet. Dans le cas où les agents sont donnés le plan de graphe, on présente un algorithme optimal pour les arbres et un algorithme asymptotiquement optimal pour générales graphes. Nous présentons aussi des algorithmes dans le cas de l'exploration sans collision des arbres et des générales graphes dans la situation où les agents ne connaissent pas le graphe. Nous fermons la thèse par des observations finales et une discussion de problèmes ouverts liés dans le domaine de l'exploration des graphes.

Page generated in 0.1375 seconds