• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data Mining Algorithms for Decentralized Fault Detection and Diagnostic in Industrial Systems

Grbovic, Mihajlo January 2012 (has links)
Timely Fault Detection and Diagnosis in complex manufacturing systems is critical to ensure safe and effective operation of plant equipment. Process fault is defined as a deviation from normal process behavior, defined within the limits of safe production. The quantifiable objectives of Fault Detection include achieving low detection delay time, low false positive rate, and high detection rate. Once a fault has been detected pinpointing the type of fault is needed for purposes of fault mitigation and returning to normal process operation. This is known as Fault Diagnosis. Data-driven Fault Detection and Diagnosis methods emerged as an attractive alternative to traditional mathematical model-based methods, especially for complex systems due to difficulty in describing the underlying process. A distinct feature of data-driven methods is that no a priori information about the process is necessary. Instead, it is assumed that historical data, containing process features measured in regular time intervals (e.g., power plant sensor measurements), are available for development of fault detection/diagnosis model through generalization of data. The goal of my research was to address the shortcomings of the existing data-driven methods and contribute to solving open problems, such as: 1) decentralized fault detection and diagnosis; 2) fault detection in the cold start setting; 3) optimizing the detection delay and dealing with noisy data annotations. 4) developing models that can adapt to concept changes in power plant dynamics. For small-scale sensor networks, it is reasonable to assume that all measurements are available at a central location (sink) where fault predictions are made. This is known as a centralized fault detection approach. For large-scale networks, decentralized approach is often used, where network is decomposed into potentially overlapping blocks and each block provides local decisions that are fused at the sink. The appealing properties of the decentralized approach include fault tolerance, scalability, and reusability. When one or more blocks go offline due to maintenance of their sensors, the predictions can still be made using the remaining blocks. In addition, when the physical facility is reconfigured, either by changing its components or sensors, it can be easier to modify part of the decentralized system impacted by the changes than to overhaul the whole centralized system. The scalability comes from reduced costs of system setup, update, communication, and decision making. Main challenges in decentralized monitoring include process decomposition and decision fusion. We proposed a decentralized model where the sensors are partitioned into small, potentially overlapping, blocks based on the Sparse Principal Component Analysis (PCA) algorithm, which preserves strong correlations among sensors, followed by training local models at each block, and fusion of decisions based on the proposed Maximum Entropy algorithm. Moreover, we introduced a novel framework for adding constraints to the Sparse PCA problem. The constraints limit the set of possible solutions by imposing additional goals to be reached trough optimization along with the existing Sparse PCA goals. The experimental results on benchmark fault detection data show that Sparse PCA can utilize prior knowledge, which is not directly available in data, in order to produce desirable network partitions, with a pre-defined limit on communication cost and/or robustness. / Computer and Information Science
2

Learning to Learn Multi-party Learning : FROM Both Distributed and Decentralized Perspectives

Ji, Jinlong 07 September 2020 (has links)
No description available.
3

Decentralized and Partially Decentralized Multi-Agent Reinforcement Learning

Tilak, Omkar Jayant 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Multi-agent systems consist of multiple agents that interact and coordinate with each other to work towards to certain goal. Multi-agent systems naturally arise in a variety of domains such as robotics, telecommunications, and economics. The dynamic and complex nature of these systems entails the agents to learn the optimal solutions on their own instead of following a pre-programmed strategy. Reinforcement learning provides a framework in which agents learn optimal behavior based on the response obtained from the environment. In this thesis, we propose various novel de- centralized, learning automaton based algorithms which can be employed by a group of interacting learning automata. We propose a completely decentralized version of the estimator algorithm. As compared to the completely centralized versions proposed before, this completely decentralized version proves to be a great improvement in terms of space complexity and convergence speed. The decentralized learning algorithm was applied; for the first time; to the domains of distributed object tracking and distributed watershed management. The results obtained by these experiments show the usefulness of the decentralized estimator algorithms to solve complex optimization problems. Taking inspiration from the completely decentralized learning algorithm, we propose the novel concept of partial decentralization. The partial decentralization bridges the gap between the completely decentralized and completely centralized algorithms and thus forms a comprehensive and continuous spectrum of multi-agent algorithms for the learning automata. To demonstrate the applicability of the partial decentralization, we employ a partially decentralized team of learning automata to control multi-agent Markov chains. More flexibility, expressiveness and flavor can be added to the partially decentralized framework by allowing different decentralized modules to engage in different types of games. We propose the novel framework of heterogeneous games of learning automata which allows the learning automata to engage in disparate games under the same formalism. We propose an algorithm to control the dynamic zero-sum games using heterogeneous games of learning automata.
4

Decentralized Learning over Wireless Networks with Imperfect and Constrained Communication : To broadcast, or not to broadcast, that is the question!

Dahl, Martin January 2023 (has links)
The ever-expanding volume of data generated by network devices such as smartphones, personal computers, and sensors has significantly contributed to the remarkable advancements in artificial intelligence (AI) and machine learning (ML) algorithms. However, effectively processing and learning from this extensive data usually requires substantial computational capabilities centralized in a server. Moreover, concerns regarding data privacy arise when collecting training data from distributed network devices. To address these challenges, collaborative ML with decentralized data has emerged as a promising solution for large-scale machine learning across distributed devices, driven by the parallel computing and learning trends. Collaborative and distributed ML can be broadly classified into two types: server-based and fully decentralized, based on whether the model aggregation is coordinated by a parameter server or performed in a decentralized manner through peer-to-peer communication. In cases where communication between devices occurs over wireless links, which are inherently imperfect, unreliable, and resource-constrained, how can we design communication protocols to achieve the best learning performance? This thesis investigates decentralized learning using decentralized stochastic gradient descent, an established algorithm for decentralized ML, in a novel setting with imperfect and constrained communication. "Imperfect" implies that communication can fail and "constrained" implies that communication resources are limited. The communication across a link between two devices is modeled as a binary event with either success or failure, depending on if multiple neighbouring devices are transmitting information. To compensate for communication failures, every communication round can have multiple communication slots, which are limited and must be carefully allocated over the learning process. The quality of communication is quantified by introducing normalized throughput, describing the ratio of successful links in a communication round. To decide when devices should broadcast, both random and deterministic medium access policies have been developed with the goal of maximizing throughput, which has shown very efficient learning performance. Finally, two schemes for allocating communication slots over communication rounds have been defined and simulated: Delayed-Allocation and the Periodic-Allocation schemes, showing that it is better to allocate slots late rather than early, and neither too frequently nor infrequently which can depend on several factors and requires further study
5

A Unified View of Local Learning : Theory and Algorithms for Enhancing Linear Models / Une Vue Unifiée de l'Apprentissage Local : Théorie et Algorithmes pour l'Amélioration de Modèles Linéaires

Zantedeschi, Valentina 18 December 2018 (has links)
Dans le domaine de l'apprentissage machine, les caractéristiques des données varient généralement dans l'espace des entrées : la distribution globale pourrait être multimodale et contenir des non-linéarités. Afin d'obtenir de bonnes performances, l'algorithme d'apprentissage devrait alors être capable de capturer et de s'adapter à ces changements. Même si les modèles linéaires ne parviennent pas à décrire des distributions complexes, ils sont réputés pour leur passage à l'échelle, en entraînement et en test, aux grands ensembles de données en termes de nombre d'exemples et de nombre de fonctionnalités. Plusieurs méthodes ont été proposées pour tirer parti du passage à l'échelle et de la simplicité des hypothèses linéaires afin de construire des modèles aux grandes capacités discriminatoires. Ces méthodes améliorent les modèles linéaires, dans le sens où elles renforcent leur expressivité grâce à différentes techniques. Cette thèse porte sur l'amélioration des approches d'apprentissage locales, une famille de techniques qui infère des modèles en capturant les caractéristiques locales de l'espace dans lequel les observations sont intégrées.L'hypothèse fondatrice de ces techniques est que le modèle appris doit se comporter de manière cohérente sur des exemples qui sont proches, ce qui implique que ses résultats doivent aussi changer de façon continue dans l'espace des entrées. La localité peut être définie sur la base de critères spatiaux (par exemple, la proximité en fonction d'une métrique choisie) ou d'autres relations fournies, telles que l'association à la même catégorie d'exemples ou un attribut commun. On sait que les approches locales d'apprentissage sont efficaces pour capturer des distributions complexes de données, évitant de recourir à la sélection d'un modèle spécifique pour la tâche. Cependant, les techniques de pointe souffrent de trois inconvénients majeurs :ils mémorisent facilement l'ensemble d'entraînement, ce qui se traduit par des performances médiocres sur de nouvelles données ; leurs prédictions manquent de continuité dans des endroits particuliers de l'espace ; elles évoluent mal avec la taille des ensembles des données. Les contributions de cette thèse examinent les problèmes susmentionnés dans deux directions : nous proposons d'introduire des informations secondaires dans la formulation du problème pour renforcer la continuité de la prédiction et atténuer le phénomène de la mémorisation ; nous fournissons une nouvelle représentation de l'ensemble de données qui tient compte de ses spécificités locales et améliore son évolutivité. Des études approfondies sont menées pour mettre en évidence l'efficacité de ces contributions pour confirmer le bien-fondé de leurs intuitions. Nous étudions empiriquement les performances des méthodes proposées tant sur des jeux de données synthétiques que sur des tâches réelles, en termes de précision et de temps d'exécution, et les comparons aux résultats de l'état de l'art. Nous analysons également nos approches d'un point de vue théorique, en étudiant leurs complexités de calcul et de mémoire et en dérivant des bornes de généralisation serrées. / In Machine Learning field, data characteristics usually vary over the space: the overall distribution might be multi-modal and contain non-linearities.In order to achieve good performance, the learning algorithm should then be able to capture and adapt to these changes. Even though linear models fail to describe complex distributions, they are renowned for their scalability, at training and at testing, to datasets big in terms of number of examples and of number of features. Several methods have been proposed to take advantage of the scalability and the simplicity of linear hypotheses to build models with great discriminatory capabilities. These methods empower linear models, in the sense that they enhance their expressive power through different techniques. This dissertation focuses on enhancing local learning approaches, a family of techniques that infers models by capturing the local characteristics of the space in which the observations are embedded. The founding assumption of these techniques is that the learned model should behave consistently on examples that are close, implying that its results should also change smoothly over the space. The locality can be defined on spatial criteria (e.g. closeness according to a selected metric) or other provided relations, such as the association to the same category of examples or a shared attribute. Local learning approaches are known to be effective in capturing complex distributions of the data, avoiding to resort to selecting a model specific for the task. However, state of the art techniques suffer from three major drawbacks: they easily memorize the training set, resulting in poor performance on unseen data; their predictions lack of smoothness in particular locations of the space;they scale poorly with the size of the datasets. The contributions of this dissertation investigate the aforementioned pitfalls in two directions: we propose to introduce side information in the problem formulation to enforce smoothness in prediction and attenuate the memorization phenomenon; we provide a new representation for the dataset which takes into account its local specificities and improves scalability. Thorough studies are conducted to highlight the effectiveness of the said contributions which confirmed the soundness of their intuitions. We empirically study the performance of the proposed methods both on toy and real tasks, in terms of accuracy and execution time, and compare it to state of the art results. We also analyze our approaches from a theoretical standpoint, by studying their computational and memory complexities and by deriving tight generalization bounds.

Page generated in 0.1225 seconds