• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a shock-Induced Combustion experiment in an axisymmetric configuration with hydrogen injection

Verreault, Jimmy 12 April 2018 (has links)
Ce travail présente la conception d'une expérience de combustion induite par choc. Ce type de combustion est utilisé pour la propulsion des avions voyageant plus rapidement que Mach 5, qui est le sujet de cet étude, mais survient également, par exemple, dans le lancement de projectile à haute vitesse (accélérateur dynamique). Une configuration conique à deux angles a été utilisée et quatre géométries d'injection ont été considérées: une surface conique, une configuration à double étage avec espacement rectangulaire, une rampe cylindrique et une rampe en forme de double coin. Les conditions du carburant et de l'écoulement libre ont aussi été modifiées. Quatre paramètres ont été étudiés: la hauteur de pénétration du carburant, le rendement de mélange, le contrôle de l'allumage prématuré et l'interaction entre l'onde de choc et la couche limite. Les simulations numériques ont été exécutées avec le code FLUENT®. Les équations Navier-Stokes tridimensionnelles moyennées par Favre ont été résolues en utilisant le modèle de turbulence SST k — u> développé par Menter. L'oxydation de l'hydrogène a été modelée par le mécanisme de réaction Jachimowski, qui inclut 9 espèces et 20 réactions. Une relation a été dérivée afin de prédire la hauteur de pénétration du carburant à la fin de la région de mélange. De l'étude de mélange, la rampe cylindrique a généré le meilleur champ d'écoulement pour accomplir la combustion induite par choc, puisqu'elle a procuré le meilleur rendement de mélange, elle a prévenu l'allumage prématuré et elle a dispersé le carburant loin de la surface. La partie réactive a révélé que la combustion du mélange a pu être initiée par la deuxième onde de choc, et que la zone subsonique dans la région de combustion a réduit la longueur d'induction. / This work presents a design for a shock-induced combustion experiment. This type of combustion occurs in aircraft engines flying faster than Mach 5, which is the topic of this study, but also occurs, for example, in high-speed projectile launching (ram accelerators). A two-angle cone configuration was used and four injector geometries were considered: a conical surface, a dual-stage configuration with rectangular gaps, a cylindrical ramp and a double-wedge ramp. The fuel as well as the freestream conditions were also varied. Four parameters were investigated: the fuel penetration height, the mixing efficiency, the control of premature ignition and the shock wave / boundary layer interaction. The numerical calculations were performed with the FLUENT® code. The three-dimensional Favre-averaged Navier-Stokes equations were solved employing the Menter SST k — u turbulence model. The hydrogen/oxygen combustion was modelled with a 9 species and 20 reactions Jachimowski reaction mechanism. A relation was derived to predict the fuel penetration height at the end of the mixing region. From the mixing study, the cylindrical ramp injector gave the best flowfield for shock-induced combustion since it provided the best mixing efficiency, prevented premature ignition and dispersed the fuel far from the wall. The combustion modelling revealed that combustion can be initiated by the second shock wave, and that the subsonic zone in the combustion region reduced the induction length.
2

Modélisation analytique et numérique de la cavité interne d'un injecteur rotatif fronde pour turbines à gaz

Matteï, Jérémie Hugo 16 April 2018 (has links)
La maîtrise effectuée au laboratoire de Combustion de l'Université Laval s'est inscrite dans un projet de conception d'un nouveau système de combustion pour de petites turbines à gaz, intégrant un atomiseur rotatif dénommé atomiseur fronde ou plus communément slinger. Ce projet est proposé et en partie financé par Pratt & Whitney Canada (P&WC). L'objectif final est de fournir un système d'injection de carburant simple, peu coûteux, léger et efficace, grâce à la suppression - permise par l'atomiseur rotatif centrifuge - de la pompe à carburant à haute pression. La maîtrise se situant dans la première phase du projet, les travaux réalisés se sont donc concentrés au niveau de la section interne de l'atomiseur où le carburant est encore sous forme de jet puis de film liquide, c'est-à-dire avant sa désintégration dans la zone primaire de la chambre de combustion. Les objectifs propres à cette maîtrise comprenaient : (1) la modélisation analytique du système d'alimentation du carburant dans la cavité au regard des phénomènes physiques s'y déroulant (chute de pression, écoulement transversal), (2) la modélisation par Mécanique des Fluides Numérique (MFN) du film liquide sur la paroi de l'atomiseur en rotation dans le but d'évaluer l'épaisseur de film (paramètre influençant directement la qualité de Tatomisation et dès lors la future combustion) avant Tatomisation. Concernant le système d'alimentation en carburant, une configuration optimale en termes de nombre, de diamètre et de forme de trous a été déterminée en garantissant théoriquement un jet jusqu'à impact sur l'atomiseur. Quant aux simulations numériques exécutées avec le code de calcul FLUENTMD, elles ont abouti à la validation du code vis-à-vis de la prédiction de l'épaisseur de film liquide se développant sur un disque plat rotatif. Une légère sous-estimation systématique a été observée due à la non prise en compte de l'effet de glissement dans le code. Enfin, diverses simulations sur la géométrie réelle simplifiée proposée par P&WC ont servi à déceler certaines limitations du code, reliées à l'effort numérique conséquent imposé par le modèle multiphase Volume de Fluide (VOF ou Volume of Fluid). Le présent mémoire se termine sur une série de recommandations pour les futures recherches, dans l'optique d'obtenir à terme un outil numérique fiable à l'égard de la prédiction de l'épaisseur de film liquide sur la surface rotative de l'atomiseur fronde.
3

Analyse de cycle de vie des énergies alternatives pour l'automobile et propositions méthodologiques pour une meilleure évaluation des impacts locaux

Querini, Florent 06 July 2012 (has links) (PDF)
Cette thèse, réalisée dans le cadre d'un contrat CIFRE entre l'entreprise Renault et l'Institut PPRIME (UPR CNRS 3346, ISAE-ENSMA-Université de Poitiers), porte sur les analyses de cycles de vie des carburants et énergies alternatives. Le secteur de la mobilité individuelle fait face à de nombreux défis : réchauffement climatique, pollution urbaine, épuisement des ressources, etc. Par conséquent, différentes alternatives se présentent pour répondre à ces défis : agrocarburants, hydrogène, véhicule électrique, etc. L'AVC permet d'évaluer les impacts environnementaux d'un produit ou d'un système. La thèse porte sur la prise en compte des impacts locaux liés à la production et à la consommation des énergies automobiles alternatives en retenant particulièrement les carburants de référence que sont le diesel et l'essence mais aussi les agrocarburants de première génération et l'électricité. Elle traite en particulier des problématiques de pertinence de ces impacts, notamment en cherchant à établie quels impacts retenir et comment les améliorer (prise en compte de la différentiation entre milieu urbain et milieu rural et entre sources hautes et basses). La seconde partie de la thèse étudie l'impact de l'usage du véhicule, en s'intéressant spécialement aux polluants locaux émis selon la norme de dépollution du véhicule et le cycle de roulage utilisé. Le tout vise à obtenir des résultats d'AVC scientifiquement plus robustes et plus facilement interprétables pour une prise de décision fiable, valide dans la durée et cohérente avec les grands enjeux stratégiques de Renault. Les résultats montrent une empreinte environnementale complexe à analyser : alors que l'électricité renouvelable apporte de vrais gains vis-à-vis des carburants conventionnels, l'électricité fossile possède un bilan mitigé selon l'impact regardé. Par ailleurs, les agrocarburants présentent un bilan globalement négatif vis-à-vis des carburants conventionnels. Enfin, la distinction urbain / rural permet de mettre en évidence les gains sur la santé associés au véhicule électrique.
4

Diesel thermal management optimization for effective efficiency improvement

Douxchamps, Pierre-Alexis 07 June 2010 (has links)
This work focuses on the cooling of diesel engines. Facing heavy constraints such<p>as emissions control or fossil energy management, political leaders are forcing car<p>manufacturers to drastically reduce the fuel consumption of passenger vehicles. For<p>instance, in Europe, this fuel consumption has to reach 120 g CO2 km by 2012, namely 25 % reduction from today's level.<p>Such objectives can only be reached with an optimization of all engines components<p>from injection strategies to power steering. A classical energy balance of an internal<p>combustion engine shows four main losses: enthalpy losses at the exhaust, heat<p>transfer to the cylinder walls, friction losses and external devices driving. An<p>optimized cooling will improve three of them: the heat transfer losses by increasing<p>the cylinder walls temperature, the friction losses by reducing the oil viscosity and<p>the coolant pump power consumption.<p>A model is first built to simulate the engine thermal behavior from the combustion<p>itself to the temperatures of the different engine components. It is composed by two<p>models with different time scales. First, a thermodynamic model computes the in cylinder<p>pressure and temperature as well as the heat flows for each crank angle.<p>These heat flows are the main input parameters for the second model: the nodal<p>one. This last model computes all the engine components temperatures according<p>to the nodal model theory. The cylinder walls temperature is then given back to<p>the thermodynamic model to compute the heat flows.<p>The models are then validated through test bench measurements giving excellent<p>results for both Mean Effective Pressure and fluids (coolant and oil) temperatures.<p>The used engine is a 1.9l displacement turbocharged piston engine equipped with<p>an in-cylinder pressure sensor for the thermodynamic model validation and thermocouples<p>for the nodal model validation.<p>The model is then used to optimize the coolant mass flow rate as a function of<p>the engine temperature level. Simulations have been done for both stationary<p>conditions with effciency improvement up to 7% for specific points (low load, high<p>engine speed) and transient ones with a heating time improvement of about 2000s.<p>This gains are then validated on the test bench showing again good agreement. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.2555 seconds