• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 19
  • 17
  • 12
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 218
  • 54
  • 30
  • 21
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Sources, transport and fate of perfluoroalkyl acids in the atmosphere

Johansson, Jana January 2017 (has links)
Perfluoroalkyl acids (PFAAs) are man-made chemicals which have been observed in the global environment, even in locations far away from where they are emitted. These persistent substances are taken up in humans and biota and may have toxic effects. Knowledge about how PFAAs are dispersed in the environment is needed to discern strategies to manage their sources and to evaluate the efficacy of adopted legislation. This thesis aimed to increase our understanding of the sources of PFAAs to the atmosphere and how PFAAs are transported in air. The results of Paper I demonstrated that gaseous perfluorooctanoic acid (PFOA) sorbs to typical glass fibre filters (GFFs) used in high-volume air sampling of PFAAs. As a consequence, the fraction of gaseous PFOA present in sampled air is underestimated, while the fraction of PFOA associated with aerosols is overestimated. Replacing GFFs with filters deactivated through silanisation and siliconisation did not eliminate this sampling artefact and is therefore not recommended as a means to determine the gas-particle partitioning of PFAAs. In Paper II, monitoring of the mass of PFOA transferred from water solutions of pH 0.2-5.5 demonstrated that the acid dissociation constant of linear PFOA and the four most ubiquitous branched PFOA isomers is around or below 1. Furthermore, the results demonstrated that the presence of counter ions and organic matter in water retarded, rather than enhanced, the volatilisation of PFOA. Therefore, volatilisation of all isomers of PFOA from environmental waters is expected to be negligible. To further study the transfer of PFAAs from environmental waters to air, Paper III simulated the process of sea spray generation in the laboratory. Strong enrichment of PFAAs was observed from bulk water to the surface microlayer and to aerosols. The enrichment increased with PFAA chain length, indicating that this process is of greater importance for more surface active substances. The highest enrichment was observed in aerosols &lt; 1.6 µm, which can travel over long distances if not rained out. Based on the measured aerosol enrichment factors we estimated that approximately 70 metric tonnes of PFAAs are aerosolised from the global oceans yearly and that 3% of this mass is deposited in terrestrial environments. Paper IV reported the occurrence of branched PFOA isomers in deposition sampled in five geographical locations. The presence of these isomers demonstrated that atmospheric transformation of fluorotelomer alcohols is not the only ongoing source of PFAAs to air. We hypothesised that, additionally, both sea spray aerosols and direct emissions from manufacturing sources contributed to the contamination of the precipitation on different spatial scales. Although further research is required to determine the relative importance of different sources to the atmosphere locally and globally, this thesis has substantially advanced the state-of-the-science by i) demonstrating the significance of an air sampling artefact discussed as an uncertainty in the scientific literature over the past decade, ii) definitively ruling out volatilisation from environmental waters as a source of PFOA to air, iii) demonstrating transfer of PFAAs from seawater to air via sea spray aerosols and thus quantifying the environmental importance of this process, and iv) ultimately demonstrating that several types of sources of PFAAs impact the global atmosphere and thus PFAA contamination patterns in precipitation. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
122

Synthesis of <sup>11</sup>C-labelled Alkyl Iodides : Using Non-thermal Plasma and Palladium-mediated Carbonylation Methods

Eriksson, Jonas January 2006 (has links)
<p>Compounds labelled with <sup>11</sup>C (<i>β</i><sup>+</sup>, t<sub>1/2</sub> = 20.4 min) are used in positron emission tomography (PET), which is a quantitative non-invasive molecular imaging technique. It utilizes computerized reconstruction methods to produce time-resolved images of the radioactivity distribution in living subjects. </p><p>The feasibility of preparing [<sup>11</sup>C]methyl iodide from [<sup>11</sup>C]methane and iodine via a single pass through a non-thermal plasma reactor was explored. [<sup>11</sup>C]Methyl iodide with a specific radioactivity of 412 ± 32 GBq/µmol was obtained in 13 ± 3% decay-corrected radiochemical yield within 6 min via catalytic hydrogenation of [<sup>11</sup>C]carbon dioxide (24 GBq) and subsequent iodination, induced by electron impact. </p><p>Labelled ethyl-, propyl- and butyl iodide was synthesized, within 15 min, via palladium-mediated carbonylation using [<sup>11</sup>C]carbon monoxide. The carbonylation products, labelled carboxylic acids, esters and aldehydes, were reduced to their corresponding alcohols and converted to alkyl iodides. [1-<sup>11</sup>C]Ethyl iodide was obtained via palladium-mediated carbonylation of methyl iodide with a decay-corrected radiochemical yield of 55 ± 5%. [1-<sup>11</sup>C]Propyl iodide and [1-<sup>11</sup>C]butyl iodide were synthesized via the hydroformylation of ethene and propene with decay-corrected radiochemical yields of 58 ± 4% and 34 ± 2%, respectively. [1-<sup>11</sup>C]Ethyl iodide was obtained with a specific radioactivity of 84 GBq/mmol from 10 GBq of [<sup>11</sup>C]carbon monoxide. [1-<sup>11</sup>C]Propyl iodide was synthesized with a specific radioactivity of 270 GBq/mmol from 12 GBq and [1-<sup>11</sup>C]butyl iodide with 146 GBq/mmol from 8 GBq. </p><p>Palladium-mediated hydroxycarbonylation of acetylene was used in the synthesis of [1-<sup>11</sup>C]acrylic acid. The labelled carboxylic acid was converted to its acid chloride and subsequently treated with amine to yield <i>N-</i>[<i>carbonyl</i>-<sup>11</sup>C]benzylacrylamide. In an alternative method, [<i>carbonyl</i>-<sup>11</sup>C]acrylamides were synthesized in decay-corrected radiochemical yields up to 81% via palladium-mediated carbonylative cross-coupling of vinyl halides and amines. Starting from 10 ± 0.5 GBq of [<sup>11</sup>C]carbon monoxide, <i>N-</i>[<i>carbonyl</i>-<sup>11</sup>C]benzylacrylamide was obtained in 4 min with a specific radioactivity of 330 ± 4 GBq/µmol. </p>
123

Percutaneous delivery of thalidomide and its N-alkyl analogues for treatment of rheumatoid arthritis / Colleen Goosen

Goosen, Colleen January 1998 (has links)
Thesis (PhD (Pharmaceutics))--PU for CHE, 1999.
124

Lewis acid Mediated Aza-Diels-Alder Reactions and Asymmetric Alkylations of 2H-azirines

Risberg, Erik January 2004 (has links)
This thesis describes the use of 2H-azirines, three-membered unsaturatednitrogen-containing heterocycles, as reactive intermediates ina number of Lewis acid promoted alkylations and Diels-Alderreactions providing synthetically useful aziridines. In order to carry out this investigation a new generalprocedure for the ring closure of vinyl azides, forming theresultant 3-substituted-2H-azirines, was developed applying low boiling solventsin closed reaction vessels at elevated temperatures. The addition of organolithium reagents in the presence ofcommercially available chiral ligands, to the 3-(2-naphthyl)-2H-azirine was studied, which gave the correspondingaziridines. Several Lewis acids were shown to catalyze the normalelectron-demand Diels-Alder reaction between 3-alkyl-,3-aromatic-, and 3-ester-substituted 2H-azirines and various dienes. These reactions gave theexpected cycloadducts in moderate yields. Using a chiral auxiliary high diastereoselectivity wasobtained in the addition of alkyl radicals to a8-phenylmenthyl-substituted 2H-azirine-3-carboxylate. The alkyl radicals weregenerated from the corresponding trialkyl borane and molecularoxygen. Hydroborations and transmetallations were used toprepare these trialkylboranes. Catalytic amounts of CuClincreased the diastereoselectivity in the radical additionreactions. Attempts were made to explain how the coordination of aLewis acid to the azirine nitrogen atom affects thereactivity/stability of the azirine. DFT calculations and NMRexperiments involving Lewis acid-azirine complexes wereperformed. Keywords:Enantioselective, diastereoselective, vinylazide, 2H-azirines, aziridines, Lewis acid, chiral ligand,chiral auxiliary, organolithiums, Diels-Alder reaction, alkylradicals, triethylborane.
125

Simplified Routines for Sample Preparation and Analysis of Chemical Warfare Agent Degradation Products

Subramaniam, Raja January 2012 (has links)
The thesis describes the development of new and improved methods for analyzing degradation markers from organophosphorus Chemical Warfare Agents (CWAs). Paper I and II describes an innovative and significantly improved method for the enrichment, derivatization (trimethysilylation) and GC-MS analysis of a broad range of organophosphorus CWAs degradation markers, namely the alkylphosphonic acids and a zwitterionic compound. That was achieved using solid phase disc extraction in combination with solid phase derivatization. The new method overcomes most limitations observed with existing techniques: it offers almost 100 % recoveries, requires no elution or evaporation steps, facilitates miniaturization of the solid sorbent and reagent, is compatible with in-vial derivatization, and minimizes the chromatographic background due to the use of a highly selective anion exchange sorbent disc. Paper III describes the development of new fluorinated diazomethane derivatization reagents and their evaluation for rapid and high sensitivity screening and identification of nerve agent degradation markers. The reagents are water-tolerant to some extent, which simplifies the derivatization step. The best reagent identified was 3,5-bis(trifluoromethyl)benzyl diazomethane, which outperformed the other reagent isomers tested and also the established commercial alternative, pentafluorobenzylbromide, allowing for the rapid (5 min) and direct derivatization of a 25 μL aqueous sample in acetonitrile. The spectra of the formed derivatives (high-energy collision induced fragmentation MS/MS) were used to construct a database (Paper IV) that proved to be superior in terms of match factor and probability compared to EI data gathered for trimethylsilyl derivatives. The study also focused on efforts towards achieving detailed structure information on the alkyl chains of the compounds in question using diagnostic ion interpretation. The final paper (paper V) describes the first rapid direct derivatization method for analyzing nerve agent metabolites in urine at trace levels. The method is based on the derivative from the paper III and the unambiguous identification was proven using a combination of low resolution and high resolution negative ion chemical ionization selected ion monitoring techniques. Novel results presented in these papers include: the first in-situ derivatization of alkylphosphonic acids on an SPE disc; the first direct derivatization of nerve agent markers in water and biomedical samples; the first high sensitivity GC-MS screening for these markers; and the first highly reproducible high-energy isomer specific CID MS/MS library. Overall, the results presented in this thesis represent significant contributions to the analysis of nerve agent degradation products.
126

Synthesis And Electrochemical Studies Of Fluorene And Benzimidazole Containing Conjugated Polymers

Namal, Imge 01 January 2013 (has links) (PDF)
The synthesis and characterization of two donor acceptor type conjugated polymers were investigated. The electrochemical properties were examined using cyclic voltammetry, spectroelectrochemistry and kinetic studies. The increase in the alkyl chain length attached to the fluorene unit was investigated by the corresponding electrochemical characteristics. The synthesis was carried out via Stille coupling of 4,7- dibromo-4&#039 / -(tert-butyl)spiro[benzo[d]imidazole-2,1&#039 / cyclohexane] and 2,5- bis(tributylstannyl)thiophene with 9,9-dihexyl-9H fluorene and 9,9-didodecyl-9H fluorene respectively. Both of the polymers were neutral state green polymers. They had optical band gaps of 2.46 and 2.54 eV respectively. Increasing the chain length resulted in an increase in solubility and processibility of the polymer but also an increase in the band gap. This was due to the increased bulkyness of the alkyl group, leading to a decrease in the effective conjugation and planarity. They both had distinctive &pi / -&pi / * transitions, band structure and backbone that provides oxidative doping. P1, with the shorter alkyl chain had a lower oxidation potential than P2. Neither of the polymers was capable of being n-doped. They were both multichromic, revealing colors from neutral state green to doped state blue.
127

Synthesis of 11C-labelled Alkyl Iodides : Using Non-thermal Plasma and Palladium-mediated Carbonylation Methods

Eriksson, Jonas January 2006 (has links)
Compounds labelled with 11C (β+, t1/2 = 20.4 min) are used in positron emission tomography (PET), which is a quantitative non-invasive molecular imaging technique. It utilizes computerized reconstruction methods to produce time-resolved images of the radioactivity distribution in living subjects. The feasibility of preparing [11C]methyl iodide from [11C]methane and iodine via a single pass through a non-thermal plasma reactor was explored. [11C]Methyl iodide with a specific radioactivity of 412 ± 32 GBq/µmol was obtained in 13 ± 3% decay-corrected radiochemical yield within 6 min via catalytic hydrogenation of [11C]carbon dioxide (24 GBq) and subsequent iodination, induced by electron impact. Labelled ethyl-, propyl- and butyl iodide was synthesized, within 15 min, via palladium-mediated carbonylation using [11C]carbon monoxide. The carbonylation products, labelled carboxylic acids, esters and aldehydes, were reduced to their corresponding alcohols and converted to alkyl iodides. [1-11C]Ethyl iodide was obtained via palladium-mediated carbonylation of methyl iodide with a decay-corrected radiochemical yield of 55 ± 5%. [1-11C]Propyl iodide and [1-11C]butyl iodide were synthesized via the hydroformylation of ethene and propene with decay-corrected radiochemical yields of 58 ± 4% and 34 ± 2%, respectively. [1-11C]Ethyl iodide was obtained with a specific radioactivity of 84 GBq/mmol from 10 GBq of [11C]carbon monoxide. [1-11C]Propyl iodide was synthesized with a specific radioactivity of 270 GBq/mmol from 12 GBq and [1-11C]butyl iodide with 146 GBq/mmol from 8 GBq. Palladium-mediated hydroxycarbonylation of acetylene was used in the synthesis of [1-11C]acrylic acid. The labelled carboxylic acid was converted to its acid chloride and subsequently treated with amine to yield N-[carbonyl-11C]benzylacrylamide. In an alternative method, [carbonyl-11C]acrylamides were synthesized in decay-corrected radiochemical yields up to 81% via palladium-mediated carbonylative cross-coupling of vinyl halides and amines. Starting from 10 ± 0.5 GBq of [11C]carbon monoxide, N-[carbonyl-11C]benzylacrylamide was obtained in 4 min with a specific radioactivity of 330 ± 4 GBq/µmol.
128

Source Characterization and Pretreatment Evaluation of Pharmaceuticals and Personal Care Products in Healthcare Facility Wastewater

Nagarnaik, Pranav Mukund 2011 May 1900 (has links)
Healthcare facility wastewaters are a potentially important and under characterized source of pharmaceuticals and personal care products to the environment. In this study the composition and magnitude of pharmaceuticals and personal care products (PPCPs) released into a single municipality’s wastewater system from a hospital, a nursing care facility, an assisted living facility and an independent living facility are presented for 54 pharmaceuticals, 8 hormones and 31 Alkylphenol ethoxylates (APEOs). Chemical oxidation using molecular ozone and advanced oxidation processes (AOPs) (UV-hydrogen peroxide, Fenton’s Reagent, and Photo – Fenton’s Reagent) were screened and evaluated as potential treatment technologies for removal of APEOs in water and wastewater. In this research, APEOs were found to be dominant PPCP class out of 94 individual analytes measured, accounting for more than 65% of the total mass loading observed leaving the healthcare facility wastewater. Seventy one out of the total measured PPCPs were detected in wastewater from at least one of the facilities. Healthcare facility wastewater are the source of PPCPs to the environment; however, their contribution to the total magnitude of PPCPs in municipal wastewater and the surrounding environment will be determined by the relative flow contribution of wastewater released from the facility to the municipal sewer network. Molecular ozone and advanced oxidation processes were observed to remove APEOs from analyzed water matrices; however, understanding the product formation during the oxidation process is important before concluding a suitable treatment process. Molecular ozone reacted selectively with the double bond in the APEO while AOPs reaction was non selective oxidation. During the AOPs, OH· formation rate and scavenging rate constant of wastewater was found to be the factors governing the oxidation process. Thus, the research carried out informs a risk management decisions concerning the prevalence of PPCPs in the wastewater and use of oxidation systems as a treatment technologies for removal of PPCPs.
129

Investigation Of Thermal Characteristics Of Naphthoxazines And Polynaphthoxazines Via Pyrolysis Mass Spectrometry

Koyuncu, Zeynep 01 May 2009 (has links) (PDF)
In this study, polymerization mechanisms of aromatic (C6H5 or C6F5) and alkyl (CH3, C2H5, C3H7, C6H13, C12H25 or C18H37) amine based naphthoxazine monomers (15-Na, 15Na-C1, 15Na-C2, 15Na-C3, 15Na-C6, 15Na-C12 and 15Na-C18) and thermal degradation mechanisms of polynaphthoxazines synthesized by curing the naphthoxazine monomers (P-15-Na, P-15NaF, P-15Na-C1, P-15Na-C2, P-15Na-C3, P-15Na-C6, P-15Na-C12 and P-15Na-C18) were studied by direct pyrolysis mass spectrometry. During the curing process, the evolutions of monomer and low mass aromatic or alkyl amines were detected below the curing temperature. The mass spectrometry findings indicated that the monomers were subjected to evaporation and degradation to a certain extent but also to polymerization during the curing process. It has been determined that the polymerization of aromatic amine based naphthoxazine monomer proceeded through the aniline units, either by coupling of the radicals produced by the ring opening of the side chains or by substitution to the benzene ring of aniline. However, even if no direct evidence to confirm polymerization by attack of &ndash / NCH2 groups to naphthalene ring was detected, it is not possible totally eliminate its existence. The evolution of aniline, the main thermal degradation product for this polymer was observed at relatively low temperatures indicating that thermal decomposition started by elimination of aromatic amine involving linkages. Coupling of &ndash / CH2 groups generated by loss of aniline, yielded naphthoxazines with unsaturated linkages that can recombine and form a crosslinked structure with higher thermal stability. Similarly, the polymerization of naphthoxazines based on alkyl amines followed opposing paths. The mass spectral data indicated that the coupling of alkyl amine radicals was the main polymerization pathway. Again, thermal decomposition of alkyl amine based naphthoxazines was started by loss of alkyl amines and diamines. The crosslinked structures produced by coupling of the radicals generated by lose of alkyl amines decomposed at relatively high temperatures.
130

Lewis acid Mediated Aza-Diels-Alder Reactions and Asymmetric Alkylations of 2H-azirines

Risberg, Erik January 2004 (has links)
<p>This thesis describes the use of 2<i>H</i>-azirines, three-membered unsaturatednitrogen-containing heterocycles, as reactive intermediates ina number of Lewis acid promoted alkylations and Diels-Alderreactions providing synthetically useful aziridines.</p><p>In order to carry out this investigation a new generalprocedure for the ring closure of vinyl azides, forming theresultant 3-substituted-2<i>H</i>-azirines, was developed applying low boiling solventsin closed reaction vessels at elevated temperatures.</p><p>The addition of organolithium reagents in the presence ofcommercially available chiral ligands, to the 3-(2-naphthyl)-2<i>H</i>-azirine was studied, which gave the correspondingaziridines.</p><p>Several Lewis acids were shown to catalyze the normalelectron-demand Diels-Alder reaction between 3-alkyl-,3-aromatic-, and 3-ester-substituted 2<i>H</i>-azirines and various dienes. These reactions gave theexpected cycloadducts in moderate yields.</p><p>Using a chiral auxiliary high diastereoselectivity wasobtained in the addition of alkyl radicals to a8-phenylmenthyl-substituted 2<i>H</i>-azirine-3-carboxylate. The alkyl radicals weregenerated from the corresponding trialkyl borane and molecularoxygen. Hydroborations and transmetallations were used toprepare these trialkylboranes. Catalytic amounts of CuClincreased the diastereoselectivity in the radical additionreactions.</p><p>Attempts were made to explain how the coordination of aLewis acid to the azirine nitrogen atom affects thereactivity/stability of the azirine. DFT calculations and NMRexperiments involving Lewis acid-azirine complexes wereperformed.</p><p><b>Keywords:</b>Enantioselective, diastereoselective, vinylazide, 2<i>H</i>-azirines, aziridines, Lewis acid, chiral ligand,chiral auxiliary, organolithiums, Diels-Alder reaction, alkylradicals, triethylborane.</p>

Page generated in 0.036 seconds