• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 19
  • 17
  • 12
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 218
  • 54
  • 30
  • 21
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Mechanistic and Synthetic Studies on Iron-Bisphosphine-Catalyzed Cross-Coupling Reactions of Alkyl Halides / ハロゲン化アルキルを用いる鉄触媒クロスカップリング反応の機構および開発に関する研究

Nakajima, Sho 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20391号 / 工博第4328号 / 新制||工||1671(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 中村 正治, 教授 辻 康之, 教授 小澤 文幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
102

Attempted Azidation of Carbohydrate Secondary Alcohols Using Arylsulfonyl Azides

Mayieka, Morgan Ongaga 06 August 2020 (has links)
No description available.
103

Stereoselective Radical Cyclopropanation by Co(II)-Based Metalloradical Catalysis:

Ke, Jing January 2022 (has links)
Thesis advisor: X. Peter Zhang / Thesis advisor: James P. Morken / Chapter 1. Stereoselective Cyclopropanation of Alkenes with Alkynyl- and Vinyl-Substituted Diazo Compounds Alkynyl- and vinyl-substituted cyclopropanes are ubiquitous structural motifs in drug molecules and bioactive compounds. In addition, alkynyl- and vinyl-substituted cyclopropanes may serve as useful intermediates for stereoselective organic synthesis. Metal-catalyzed cyclopropanation of alkenes with alkynyl- and vinyl-substituted diazo compounds offers a potentially general approach for stereoselective construction of these valuable three-membered ring structures. This chapter summarizes the development of stereoselective olefin cyclopropanation with alkynyl- and vinyl-substituted diazo compounds. Chapter 2. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes We have developed a Co(II)-based metalloradical system that is highly effective for asymmetric radical cyclopropanation of alkenes with in situ-generated α-alkynyldiazomethanes. Through fine-tuning the cavity-like environments of D₂-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to different alkynyldiazomethanes for asymmetric cyclopropanation of a broad range of alkenes, providing general access to valuable chiral alkynyl cyclopropanes in high yields with excellent diastereoselectivities and enantioselectivities. Chapter 3. Asymmetric Radical Process for Cyclopropanation of Alkenes with In Situ-Generated α-Vinyldiazomethanes We have demonstrated the feasibility of using vinyl aldehyde-derived sulfonylhydrazones as new metalloradicophiles for the generation of allylic radicals. Through fine-tuning the cavity-like environments of D₂-symmetric chiral amidoporphyrins as supporting ligands, the key α-Co(III)-allylic radical intermediates are exclusively engaged in the highly asymmetric cyclopropanation with wide-ranging alkenes in the optimized Co(II)-based metalloradical system, as shown broadly applicable to activate different α-vinyldiazomethanes. Chapter 4. Asymmetric Synthesis of Vinyl-Substituted Cyclopropanes by Radical C-H Alkylation from Alkynes and In Situ-Generated Alkyldiazomethanes via Co(II)-Based Metalloradical Catalysis We have successfully expanded the application of Co(II)-based MRC by applying in-situ generated alkyldiazomethanes as new radical precursors for stereoselective synthesis of vinyl-substituted cyclopropanes by radical cascade C-H alkylation of alkynes. Through fine-tuning of D₂-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of vinyl-substituted cyclopropanes in high yields with excellent diastereoselectivities and good enantioselectivities. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
104

Tailoring Structure Property Relationships and Elastic Phenomenon in Native and Polymer Reinforced Silica Aerogels

Randall, Jason P. 06 August 2010 (has links)
No description available.
105

Synthesis and Use of Chiral Surfactants.

Yang, Xiaoye 01 August 2001 (has links) (PDF)
It has been previously shown that micelles formed from surfactants with chiral head groups serve to induce a chiral reaction medium, leading to enhanced enantioselectivities in the reaction products. This utilization of chiral surfactants will offer an economical alternative to traditional chial solvents while simultaneously reducing organic waste. We have successfully dimethlated S-leucinol in an 85% yield, and have synthesized a hydrocarbon-based surfactant with this molecule as a head group. We have also formed polymeric surfactants that have polydimethylsiloxane as the hydrophobic portion with the (S)-dimethylleucinol as a head group. Tests of the solubility of these surfactants have been conducted. We also have done a reduction of a ketone in 95% ethanol and 1.3%-4% (w/v) surfactants, resulting in ee. 5.4%-6.6%.
106

Strategies to Improve the Performance of Antioxidants in Oil-in-Water Emulsions

Panya, Atikorn 01 September 2012 (has links)
Due to the limited number of approved antioxidants for food applications, several alternative strategies to improve antioxidant performance have been developed by focusing on synergistic antioxidant interactions. Susceptibility to lipid oxidation in food systems is the result of the summation of antioxidative and prooxidative mechanisms. Understanding the sometimes paradoxical behavior of antioxidants and prooxidants is a vital key to design synergistic antioxidant systems suitable for particular foods. This research focused on 3 main strategies to improve the performance of antioxidant activity in oil-in-water emulsions. The first part of this research has been focused on inhibition of lipid oxidation by a combination of the modification of liposomal surfaces by chitosan-coating techniques along with addition of rosmarinic acid esters of varying polarity. Repelling metal ions away from the interface of positively charged liposomes can inhibit lipid oxidation (induced by Fe2+), and also reduce antioxidant loss by Fe3+ reduction. As a result, lipid oxidation can be inhibited synergistically because of a reduction in the prooxidant activity of iron. Second, understanding non-linear antioxidant behavior (the cut-off effect) of antioxidant esters in oil-in-water (O/W) emulsions was also studied to determine how the distributions and locations of antioxidants impacted their antioxidant activity. Antioxidant activity of rosmarinic acid was improved by esterification with alkyl chain lengths between 4 to 12 carbons due to increased ability to partitioning at the interface in oil-in-water emulsions. Surfactant micelles which could increase or decreased the concentration of the antioxidants at the emulsion droplet interface altered antioxidant activity. In the last part of this research, rosmarinic acid and its esters were found to be an excellent tool for studying how antioxidant location could impact its ability to interact with α-tocopherol in O/W emulsions. Synergistic, additive, and antagonistic effects were observed in the combinations between the rosmarinate esters with α-tocopherol. Increases in alkyl chain lengths of rosmarinic acid have influenced both the partitioning of the rosmarinate esters as well as their ability to they interact with α-tocopherol at the interface of oil-in-water emulsions. Fluorescence quenching and EPR studies showed that water soluble rosmarinic acid (R0) exhibited more interactions with á-tocopherol than any of the esters (R4-R20). Synergistic antioxidant interactions between rosmarinic acid and α-tocopherol could not be explained by electron transfer mechanisms, but formation of caffeic acid from rosmarinic acid. Due to the thermodynamic infeasibility and the fact that increases in α-tocopherol degradation rates, α-tocopherol could not be regenerated efficiently by rosmarinic acid. This formation of caffeic acid was proposed to be responsible of the synergistic activity of R0 and α-tocopherol since the formation of an additional antioxidant could further increase the oxidative stability of the emulsion.
107

Towards Improved Practicality in Iron-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions:

Wong, Alexander Shun-Wai January 2021 (has links)
Thesis advisor: Jeffery A. Byers / This dissertation will discuss the development of Suzuki-Miyaura cross-coupling reactions catalyzed by iron-based complexes with an emphasis on addressing limitations to their practical application in industrial contexts. Chapter 1 will provide an overview of the development of the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction and key factors which have enabled its prevalent use in various industries, with a comparison to how those factors have limited similar development of iron-catalyzed analogues. Chapter 2 will discuss the initial discovery and subsequent development of a series of iron-based precatalysts for the cross-coupling reaction of unactivated aryl boronic esters and alkyl halides. Chapter 3 will discuss the development and validation of a bench-stable iron(III)-based complex capable of catalyzing the Suzuki-Miyaura cross-coupling reaction between unactivated aryl boronic esters and alkyl halides. To conclude, Chapter 4 will discuss the ability of iron-based complexes to participate in the Suzuki-Miyaura cross-coupling reaction with alkyl tosylate electrophiles and its implications for harnessing the ability of iron catalysis to operate under different mechanistic manifolds. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
108

GENERATION OF ALKYL RADICALS VIA C-H FUNCTIONALIZATION AND HALOGEN ATOM TRANSFER PROCESSES

Ben Niu (14216522) 03 February 2023 (has links)
<p>  </p> <p>Alkyl radicals are powerful intermediates for the generation of carbon-carbon bonds, which play an indispensable role in the synthesis of natural products, pharmaceuticals, and pesticides. Traditionally, there are two main methods for the generation of alkyl radicals. The first is C-H bond functionalization via hydrogen-atom-transfer (HAT). HAT processes have been used as an effective approach for selectively activating C-H bonds via radical pathways. The other strategy to explore the generation of alkyl radicals is C-X bond functionalization via halogen-atom-transfer (XAT). Alkyl halides are one of the largest classes of building blocks in synthesis and they can be obtained from the corresponding alcohols. The most straightforward and effective way to form such alkyl radicals is the direct homolytic cleavage of C-X bonds. In past decades, photoredox catalysis has emerged as a powerful and greener tool for the synthesis of radicals under mild reaction conditions, which has brought tremendous attention. Although remarkable success has been made in this field, some methods still require costly transition metal catalysts or toxic reagents. Herein, we display a series of visible light-induced approaches under transition-metal free conditions or using earth-abundant metals. These novel photo-induced transformations and corresponding mechanistic work will be discussed in the following order:</p> <p>We will first present our work on metal-free visible-light-promoted C(sp3)-H functionalization of aliphatic cyclic ethers using trace O2.  This reaction uses a trace amount of aerobic oxygen as the sole green oxidant under blue light at room temperature to achieve the synthesis of sulfone and phosphate derivatives in good to excellent yields using cyclic ethers and vinyl sulfones. Then, we report on a photo-induced C(sp3)-H chalcogenation of amide derivatives and ethers via a ligand-to-metal charge-transfer. This reaction converts secondary and tertiary amides, sulfonamides, and carbamates into the corresponding amido-<em>N,S</em>-acetal derivatives in good yields, using an earth abundant metal catalyst under mild conditions.</p> <p>Finally, we present a photoredox polyfluoroarylation of alkyl halides via halogen atom transfer. This method converts primary, secondary, and tertiary unactivated abundant alkyl halides into the corresponding polyfluoroaryl compounds in good yields and has good functional group compatibility.</p>
109

Material Properties of Bulk Hydrophobic Concrete in a Nordic Environment

Rogers, Patrick January 2023 (has links)
Concrete in its unaltered form allows the mass transfer of fluids into and out of its microstructure. These fluids can contain detrimental solutes which change the chemistry of the cement paste and/or the corrosion properties of the reinforcement bars, most noticeably hydrogen carbonates (HCO3-), oxygen (O2) and chloride ions (Cl-). Water and its solutions containing salts, mostly sodium chloride (NaCl), can also cause physical damage due to phase changes (freezing and thawing).  External application of hydrophobic agents onto the cement paste surface is a well-known method to alter the mass transfer at this interface. Bulk application of hydrophobic agents in ready mixed concrete is also a possible route but alters the entire cement paste. This thesis presents relevant aspects concerning the use of bulk hydrophobic agents in concrete within a spectrum water to cement ratio   (w/c) = 0.40-0.50. The main focus was on triacylglycerides (TAG) and alkyl alkoxysilanes (“silanes”) with application rates 1-3% based on cement weight.  Alterations to the compressive strengths have been observed and documented over a three-year period. The relative drop in mechanical strength is inversely proportional to w/c. The higher the addition rate, the lower the compressive strength. Chemical differences within the hydrophobic groupings (TAG or “silanes”) resulted in different outcomes. This was most noticeable in the water absorption, compressive strengths and chloride diffusion.  Freeze thaw testing did show noticeable differences, the use of “silanes” was detrimental in these tests even in deionsed water. The exact mechanism is unknown, but thin section analysis shows a lack of air entrainer (even when added on the fresh concrete mix) and extensive cracking in the entire cement paste. The scaling in concrete with TAGs was smaller but needs further improving.  The main properties intended with these agents were the ability to alter the mass transfer of water or solutions into the cement paste. Capillary suction and diffusion were examined. Increasing the w/c reduces the effectiveness of the hydrophobic agents to resist water uptake. This was seen in capillary suction and uni-directional chloride diffusion testing. Processed TAGs were more effective in reducing chloride diffusion than the unprocessed chemical whereas, in some cases, the “silanes” actually increased the amount of chloride ions transferred into the cement paste. Only a slight positive effect can be seen at the lower inclusion rate (1%). Increasing the w/c reduces the resistance to chloride ion diffusion with the same dosage rate.  A field test station close to vehicular traffic was also established in 2018 and 2019, but the specimens have not been tested at this point in time. It is hoped that these and other future studies will lead to a complete PhD project. / Betong i sin oförändrade form tillåter masstransport av vätskor i och ur dess mikrostruktur. Dessa vätskor kan innehålla skadliga lösta ämnen som förändrar cementpastans kemi och/eller korrosionsegenskaperna hos armeringsjärnen, framför allt vätekarbonater (HCO3-), syre (O2) och kloridjoner (Cl-). Vatten och dess lösningar som innehåller salter, mestadels natriumklorider (NaCl), kan till och med orsaka fysisk skada på grund av fasförändringar (frysning och upptining). Extern applicering av hydrofoba medel på cementpastans yta är en välkänd metod för att ändra masstransport genom denna gränsyta. Bulkapplicering av hydrofoba medel i färdigblandad betong är också en möjlig väg, och resulterar i förändringar i hela cementpastan. Denna licentiatavhandling presenterar relevanta aspekter rörande användningen av bulk-hydrofoba medel i betong inom intervall av vattencementtal = 0,40-0,50 (vct). Huvudfokus låg på triacylglyceroler (TAG) och alkyl-alkoxisilaner (”silaner”) med inblandning 1-3 % baserat på cementvikt. Förändringar av tryckhållfasthet har observerats och dokumenterats under en treårsperiod. Den relativa reduktionen i mekanisk hållfasthet är omvänt proportionell mot vct. Ju högre tillsatsmängd i cementpastan desto lägre tryckhållfasthet. Kemiska skillnader inom de hydrofoba grupperna (TAG eller "silaner") resulterade i olika resultat. Detta var mest märkbart i vattenabsorption, tryckhållfasthet och kloriddiffusion. Frysprovning visade märkbara skillnader, användningen av "silaner" var skadlig i dessa tester även i avjoniserat vatten. Den exakta mekanismen är okänd, men tunnslipsanalys visar på brist på luftporbildare (även om den tillsätts i stora mängder i den färska betongblandningen) och omfattande sprickbildning i hela cementpastan. Avskalningen i betong med TAG var mindre men behöver ytterligare förbättras. De huvudsakliga egenskaperna avsedda med dessa medel var förmågan att förändra masstransport av vatten eller lösningar till cementpastan. Kapillärsugning och diffusion undersöktes. Att öka vct minskar effektiviteten hos de hydrofoba medlen för att motstå vattenupptagning. Detta sågs vid kapillärsugning och enkelriktad kloriddiffusionsprovning. Raffinerade TAG:er var effektivare att minska kloriddiffusion än den oraffinerade, medan "silanerna" i visa fall faktiskt ökade mängden kloridjoner som överfördes inne i cementpastan. Något positiva effekt kan ses vid den lägre inkluderingstillsatsen (1 %). Att öka vct minskar motståndet mot kloridjondiffusion. En fältteststation intill fordonstrafik etablerades också 2018 och 2019 men provkropparna har inte testats vid denna tidpunkt. Förhoppningen är att dessa och andra framtida studier ska leda till ett komplett doktorandprojekt. / <p>QC 230330</p>
110

SYNTHESIS OF A POLYMER/ N-ALKYL UREA PEPTOID CONJUGATE

Yang, Gang 21 October 2013 (has links)
No description available.

Page generated in 0.0422 seconds