Spelling suggestions: "subject:"alpha subunit"" "subject:"αlpha subunit""
1 |
Sorting nexin 9 in clathrin-mediated endocytosis /Lundmark, Richard, January 2004 (has links)
Diss. (sammanfattning) Umeå : Univ., 2004. / Härtill 3 uppsatser.
|
2 |
Allosteric determinants of guanine nucleotide binding proteins and methods to crystallize the cytosolic domains of adenylyl cyclaseHatley, Mark Edward. January 2004 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2004. / Vita. Bibliography: 154-163.
|
3 |
Mutations of the Alpha-Subunit of G-Proteins: A ThesisWoon, Chee-Wai 01 September 1988 (has links)
Signal transduction by G-proteins (a heterotrimer membrane protein composed of an α, β, and γ subunit) requires that the α-subunit undergoes a transition from a GDP-bound inactive state to an activated GTP-bound state. The exchange of GDP for GTP leads to a conformational change in the α-subunit that results in the loss of affinity for the βγ subunits. We predicted that appropriate genetic manipulation of key regions of the α-subunit could result in the induction of the active conformation that would mimic at least in part the activated GTP-bound state. We have demonstrated that the substitution of the 38 amino acid residue carboxyl termimus of Gαs with the last 36 amino acid residues of Gαi2 resulted in a chimeric Gα-subunit (C4) that exhibits a constitutively active Gαs-like activity. Similarly, the substitution of the amino terminal 61 amino acid residues of Gαs with the first 54 residues of Gαi2 also resulted in a chimeric Gα-subunit that is persistently active (Gs like). We have also generated point mutations in the Gαs subunit that are comparable to the activating mutations in the ras protein. Our results suggest that point mutations in the signature sequence of the A (Val 49) and C (Thr 225) homologous regions that are implicated in regulating the GTPase activity of the molecule also resulted in the activation of the subunit. The present study has identified four key regions of the α-subunit that are critical for the activity and regulation of the Gs protein.
|
4 |
Nuclear Organization in Breast Cancer: A DissertationDobson, Jason R. 04 April 2013 (has links)
The nuclear matrix (NM) is a fibrogranular network of ribonucleoproteins upon which transcriptional complexes and regulatory genomic sequences are organized. A hallmark of cancer is the disorganization of nuclear architecture; however, the extent to which the NM is involved in malignancy is not well studied.
The RUNX1 and RUNX2 proteins form complexes within the NM to promote hematopoiesis and osteoblastogenesis, respectively at the transcriptional level. RUNX1 and RUNX2 are both expressed in breast cancer cells (BrCCs); however, their genome-wide BrCC functions are unknown. RUNX1 and RUNX2 activate many tumor suppressor pathways in blood and bone lineages, respectively, including attenuation of protein synthesis and cell growth via suppression of ribosomal RNA (rRNA) transcription, which appears contrary to Runx-expression in highly proliferative BrCCs. To define roles for RUNX1 and RUNX2 in BrCC phenotype, we examined the involvement of RUNX1 and RUNX2 in rRNA transcription and generated a genome-wide model for RUNX1 and RUNX2-binding and transcriptional regulation. To validate gene expression patterns identified in our screen, we developed a Real-Time qPCR primer design program, which allows rapid, high-throughput design of primer pairs (FoxPrimer). In BrCCs, RUNX1 and RUNX2 regulate genes that promote invasiveness and do not affect rRNA transcription, protein synthesis, or cell growth. We have characterized in vitro functions of Runx proteins in BrCCs; however, the relationships between Runx expression and diagnostic/prognostic markers of breast cancer (BrCa) in patients are not well studied. Immunohistochemical detection of RUNX1 and RUNX2 in BrCa tissue microarrays reveals RUNX1 expression is associated with early, smaller tumors that are ER+ (estrogen receptor), HER2+, p53-, and correlated with androgen receptor (AR) expression; RUNX2 expression is associated with late-stage, larger tumors that are HER2+. These results show that the functions and expression patterns of NM-associated RUNX1 and RUNX2 are context-sensitive, which suggests potential disease-specific roles.
Two functionally disparate genomic sequence types bind to the NM: matrix associated regions (MARs) are functionally associated with transcriptional repression and scaffold associated regions (SARs) are functionally associated with actively expressed genes. It is unknown whether malignant nuclear disorganization affects the functions of MARs/SARs in BrCC. We have refined a method to isolate nuclear matrix associated DNA (NM-DNA) from a structurally preserved NM and applied this protocol to normal mammary epithelial cells and BrCCs. To define transcriptional functions for NM-DNA, we developed a computational algorithm (PeaksToGenes), which statistically tests the associations of experimentally-defined NM-DNA regions and ChIP-seq-defined positional enrichment of several histone marks with transcriptome-wide gene expression data. In normal mammary epithelial cells, NM-DNA is enriched in both MARs and SARs, and the positional enrichment patterns of MARs and SARs are strongly associated with gene expression patterns, suggesting functional roles. In contrast, the BrCCs are significantly enriched in the silencing mark H3K27me3, and the NM-DNA is enriched in MARs and depleted of SARs. The MARs/SARs in the BrCCs are only weakly associated with gene expression patterns, suggesting that loss of normal DNA-matrix associations accompanies the disease state. Our results show that structural preservation of the in situ NM allows isolation of both MARs and SARs, and further demonstrate that in a disorganized, cancerous nucleus, normal transcriptional functions of NM-DNA are disrupted.
Our studies on nuclear organization in BrCC, show that the disorganized phenotype of the cancer cell nucleus is accompanied by deregulated transcriptional functions of two constituents of the NM. These results reinforce the role of the NM as an important structure-function component of gene expression regulation.
|
5 |
Runx Expression in Normal and Osteoarthritic Cartilage: Possible Functions of Runx Proteins in Chondrocytes: A DissertationLeBlanc, Kimberly T. 28 February 2013 (has links)
The Runx family of transcription factors supports cell fate determination, cell cycle regulation, global protein synthesis control, and genetic as well as epigenetic regulation of target genes. Runx1, which is essential for hematopoiesis; Runx2, which is required for osteoblast differentiation; and Runx3, which is involved in neurologic and gut development; are expressed in the growth plate during chondrocyte maturation, and in the chondrocytes of permanent cartilage structures. While Runx2 is known to control genes that contribute to chondrocyte hypertrophy, the functions of Runx1 and Runx3 during chondrogenesis and in cartilage tissue have been less well studied.
The goals of this project were to characterize expression of Runx proteins in articular cartilage and differentiating chondrocytes and to determine the contribution of Runx1 to osteoarthritis (OA). Here, the expression pattern of Runx1 and Runx2 was characterized in normal bovine articular cartilage. Runx2 is expressed at higher levels in deep zone chondrocytes, while Runx1 is primarily expressed in superficial zone chondrocytes, which is the single cell layer that lines the surface of articular cartilage. Based on this finding, the hypothesis was tested that Runx1 is involved in osteoarthritis, which is a disease characterized by degradation of articular cartilage and changes in chondrocytes. These studies showed that Runx1 is upregulated in articular cartilage explants in response to mechanical compression. Runx1 was also expressed in chondrocytes found at the periphery of OA lesions in the articular cartilage of mice that underwent an OA-inducing surgery. Runx1 was also upregulated in cartilage explants of human osteoarthritic knees, and IHC data showed that Runx1 is mainly expressed in chondrocyte “clones” characteristic of OA.
To ascertain the potential function of the upregulation of Runx1 in these cartilage stress conditions and disease states, the hypothesis was tested that Runx1 is upregulated in very specific chondrocyte populations in response to the cartilage damage in osteoarthritis. These studies addressed the properties of these cells that related to functions in cell growth and differentiation. In both the surface layer of normal articular cartilage, and in OA cartilage, Runx1 expression by IF co-localized with markers of mesenchymal progenitor cells, as well as markers of proliferation Ki-67 and PCNA. This finding indicated that Runx1 is found in a population of cells that represent a proliferative population of mesenchymal progenitor cells in osteoarthritis.
To further address Runx1 function and identify downstream targets of Runx proteins, a promoter analysis of genes that are known to be either downregulated or upregulated during chondrocyte maturation was done. These studies found that many of these genes have 1 or more Runx binding sites within 2kb of their transcription start site, indicating that they are potential downstream Runx target genes.
Lastly, some preliminary experiments were done to characterize novel roles of Runx proteins in the chondrocyte. Runx proteins have been shown to epigenetically regulate their target genes by remaining bound to them throughout mitosis, “poising” them for transcription upon exit from mitosis. The hypothesis that Runx proteins also function by remaining bound to their target genes throughout mitosis in chondrocytes was tested. It was demonstrated by immunofluorescense imaging of Runx proteins on metaphase chromosomes of ATDC5 cells, that Runx2 remains bound to chromosomes during mitosis.
Cell proliferation and hypertrophy are both linked to increases in protein synthesis. Runx factors, which regulate rates of global protein synthesis, are expressed in both proliferating and hypertrophic chondrocytes. Thus, it was hypothesized that Runx proteins regulate rates of global protein synthesis during chondrocyte maturation. These studies showed that the overexpression of Runx proteins in a chondrocyte cell line (ATDC5) did not affect protein synthesis rates or levels of protein synthesis machinery. Additionally, Runx proteins did not affect proliferation rates in this chondrocyte cell line.
|
6 |
Padronização das técnicas de PNA e PCR em tempo real para detecção das mutações ativadoras no GNAS na síndrome de McCune-Albright / Standardization of the PNA and real time techniques for the detection of activating mutations in the GNAS in McCune-Albright syndromeMariani, Beatriz Marinho de Paula 05 October 2012 (has links)
A síndrome de McCune Albrigth (SMA) é uma doença genética não hereditária, com incidência estimada entre 1/100.000 e 1/1.000.000 casos/ano. A SMA caracteriza-se clinicamente pela tríade: displasia óssea fibrosa (FD), manchas cutâneas café-com-leite e hiperfunção endócrina tais como: síndrome de Cushing, pseudo-puberdade precoce, hipertiroidismo, acromegalia. O diagnóstico da SMA clássica é usualmente baseado no quadro clínico associado a dosagens hormonais e exames de imagem, principalmente cintilografia do esqueleto. No entanto, quadros atípicos e formas parciais muitas vezes dificultam o diagnóstico preciso da síndrome. O objetivo deste estudo foi padronizar dentre as técnicas de PNA (peptide nucleic acid) e PCT em Tempo Real, para a detecção de polimorfismos de base única (SNPs), a técnica mais sensível para a discriminação das mutações ativadoras da subunidade da proteína G. Para este estudo foram selecionados 32 pacientes, 1 masculino e 31 femininos, com SMA, todos em seguimento no Hospital das Clínicas da Faculdade de Medicina da USP. Como resultado positivo, apresentamos nesse trabalho pela primeira vez o uso do RT-PCR genotipagem na detecção das mutações ativadoras da proteína G, em DNA extraído de tecidos afetados e em leucócitos de sangue periférico, sendo a técnica considerada sensível o suficiente para discriminar de forma simples e rápida as mutações ativadoras da PGs. Sugerimos nesse estudo o uso da técnica de discriminação alélica pelo sistema Taqman. Essa técnica possibilita a detecção destas mutações gsp no sangue periférico mesmo numa baixa porcentagem, uma vez que nem sempre o tecido afetado (gônada, osso, hipófise) é disponível. / The McCune-Albright Syndrome (MAS) is a genetic disease, with incidence estimated at 1/100.000 and 1/1000000 cases per year. MAS is clinically characterized by the triad: bone fibrous dysplasia (FD) café-au-lait skin spots and endocrine hyperfunction, such as: precocious puberty (PP), Cushing's syndrome, hyperthyroidism and acromegaly. The diagnosis of MAS is originally based on clinical characteristics associated with hormonal and imaging studies. However, atypical and partial forms often hamper the accurate diagnosis of the syndrome. For this study we selected 32 patients, 1male and 31 females, all being treated in Hospital das Clínicas, School of Medicine, University of São Paulo. As a positive result, we showed for the first time the use of Real Time PCR/genotyping for the detection of activating mutations of the stimulatory G protein, using blood leucocytes DNA. This technique was sensible and can bring fast results for the patient and the physician, making the diagnosis easier. Our study proposes the use of allelic discrimination by Taqman system, which can be used as a probe that allows the identification of specific genotypes. These techniques could help detect these mutations in peripheral blood when the affected tissue is not available.
|
7 |
Padronização das técnicas de PNA e PCR em tempo real para detecção das mutações ativadoras no GNAS na síndrome de McCune-Albright / Standardization of the PNA and real time techniques for the detection of activating mutations in the GNAS in McCune-Albright syndromeBeatriz Marinho de Paula Mariani 05 October 2012 (has links)
A síndrome de McCune Albrigth (SMA) é uma doença genética não hereditária, com incidência estimada entre 1/100.000 e 1/1.000.000 casos/ano. A SMA caracteriza-se clinicamente pela tríade: displasia óssea fibrosa (FD), manchas cutâneas café-com-leite e hiperfunção endócrina tais como: síndrome de Cushing, pseudo-puberdade precoce, hipertiroidismo, acromegalia. O diagnóstico da SMA clássica é usualmente baseado no quadro clínico associado a dosagens hormonais e exames de imagem, principalmente cintilografia do esqueleto. No entanto, quadros atípicos e formas parciais muitas vezes dificultam o diagnóstico preciso da síndrome. O objetivo deste estudo foi padronizar dentre as técnicas de PNA (peptide nucleic acid) e PCT em Tempo Real, para a detecção de polimorfismos de base única (SNPs), a técnica mais sensível para a discriminação das mutações ativadoras da subunidade da proteína G. Para este estudo foram selecionados 32 pacientes, 1 masculino e 31 femininos, com SMA, todos em seguimento no Hospital das Clínicas da Faculdade de Medicina da USP. Como resultado positivo, apresentamos nesse trabalho pela primeira vez o uso do RT-PCR genotipagem na detecção das mutações ativadoras da proteína G, em DNA extraído de tecidos afetados e em leucócitos de sangue periférico, sendo a técnica considerada sensível o suficiente para discriminar de forma simples e rápida as mutações ativadoras da PGs. Sugerimos nesse estudo o uso da técnica de discriminação alélica pelo sistema Taqman. Essa técnica possibilita a detecção destas mutações gsp no sangue periférico mesmo numa baixa porcentagem, uma vez que nem sempre o tecido afetado (gônada, osso, hipófise) é disponível. / The McCune-Albright Syndrome (MAS) is a genetic disease, with incidence estimated at 1/100.000 and 1/1000000 cases per year. MAS is clinically characterized by the triad: bone fibrous dysplasia (FD) café-au-lait skin spots and endocrine hyperfunction, such as: precocious puberty (PP), Cushing's syndrome, hyperthyroidism and acromegaly. The diagnosis of MAS is originally based on clinical characteristics associated with hormonal and imaging studies. However, atypical and partial forms often hamper the accurate diagnosis of the syndrome. For this study we selected 32 patients, 1male and 31 females, all being treated in Hospital das Clínicas, School of Medicine, University of São Paulo. As a positive result, we showed for the first time the use of Real Time PCR/genotyping for the detection of activating mutations of the stimulatory G protein, using blood leucocytes DNA. This technique was sensible and can bring fast results for the patient and the physician, making the diagnosis easier. Our study proposes the use of allelic discrimination by Taqman system, which can be used as a probe that allows the identification of specific genotypes. These techniques could help detect these mutations in peripheral blood when the affected tissue is not available.
|
8 |
Synthèse et évaluation de dérivés de l'indéno[1,2-b]indole comme inhibiteurs potentiels de la protéine kinase humaine CK2 / Synthesis and evaluation of indeno[1,2-b]indole derivatives as potential inhibitors of human protein kinase CK2Alchab, Faten 02 October 2013 (has links)
La protéine kinase caséine kinase 2 (CK2) est une sérine/thréonine kinase hautement pléiotrope dont la liste des substrats est supérieure à 500 protéines, lesquelles sont impliquées dans un large éventail de fonctions cellulaires. Les sous-unités catalytiques de CK2 (alpha et/ou alpha') sont constitutivement actives soit seules soit en combinaison avec les sous-unités régulatrices béta pour former une protéine hétérotétramérique (holoenzyme). Une troisième isoforme de la sous-unité catalytique, désignée CK2α'', a été découverte plus récemment et peu d'informations sont actuellement disponibles. L'activité hautement constitutive de CK2 est suspectée de contribuer au phénomène de néoplasie. Une stratégie de conception d'inhibiteurs tétracycliques ciblant le site ATP de la CK2 a permis l'élaboration de trois séries de composés comportant le motif indéno[1,2-b]indole. Un procédé multi-étapes de synthèse a permis de fonctionnaliser précisément le cycle D du noyau indéno[1,2-b]indole et de générer une première chimiothèque de molécules originales. Toutes les molécules finales ont été testées sur la protéine kinase humaine CK2 (Muenster) et certaines ont présentées des CI50 de l'ordre du submicromolaire. L'analyse des Relations Structure-Activité (SAR) et la construction d'un modèle 3D-QSAR (Duesseldorf) a contribué à affiner le choix des substituants introduits sur le châssis moléculaire développé. Les indéno[1,2-b]indoles fonctionnalisés les plus prometteurs ont été également testés sur d'autres cibles biologiques comme la phosphatase CDC25A (Metz) et la kinase DYRK1B (Saarbruecken). Des études de modélisation moléculaire (Duesseldorf) utilisant les données cristallographiques disponibles de l'enzyme ont permis d'analyser les interactions ligand-protéine. Les inhibiteurs les plus puissants in vitro ont été testés sur quatre lignées cellulaires normales afin d'établir leur profil cytotoxique (Centre de Recherche en Cancérologie de Lyon) / Synthesis and evaluation of indéno[1,2-b]indole derivatives as potential inhibitors of human protein kinase CK2 Protein kinase casein kinase 2 (CK2) is a serine/threonine kinase highly pleiotropic listed substrates it is greater than 500 proteins, which are involved in a wide range of cellular functions. The catalytic subunits of CK2 (α and/or α') are constitutively active either alone or in combination with the regulatory subunits to form a hetero- beta protein holoenzyme). A third isoform of the catalytic subunit, designated CK2 α', was discovered more recently and little information is currently available. The high constitutive activity of CK2 is suspected of contributing to the phenomenal of neoplasia. A design strategy tetracyclic inhibitors targeting the ATP site of CK2 resulted in the development of three series of compounds containing the motif indeno[1,2-b]indole. A multi-step synthesis process has specifically functionalize the D ring of the core indeno[1,2-b]indole and generate a first combinatorial library of original molecules. All final compounds were tested on human protein kinase CK2 (Muenster), and some have reported IC50 of the order of sub-micromolar. Analysis of Structure-Activity Relationships (SAR) and the construction of a 3D-QSAR model (Duesseldorf) helped to refine the choice of substituents introduced into the moleculair frame developed. The indeno[1,2-b]indole the most promising functionalized indoles were also tested on other biological targets such as phosphatase CDC25 A (Metz) and kinase DYRK1B (Saarbruecken). Of molecular modeling studies (Duesseldorf) using the crystallographic data of the enzyme were used to analyze protein-ligand interactions. The most potent in vitro inhibitor were tested on four normal cell lines to determine their cytotoxic profile (Cancer Research Center of Lyon)
|
9 |
Regulation of Runx Proteins in Human Cancers: A DissertationPande, Sandhya 20 July 2011 (has links)
Runt related transcription factors (Runx) play an important role in mammalian development by regulating the expression of key genes involved in cell proliferation, differentiation and growth. The work described in this thesis details the mechanisms by which the activity of two members of this family are regulated in human cells. Chapter One provides a brief introduction of Runx transcription factors.
Chapter Two describes the regulation of Runx2 protein by the PI3 kinase/Akt pathway in human breast cancer cells. The PI3 kinase/Akt pathway is one of the major signal transduction pathways through which growth factors influence cell proliferation and survival. It is also one of the most frequently dysregulated pathways in human cancers. We identify Runx2 protein, a key regulator of breast cancer invasion as a novel substrate of Akt kinase and map residues of Runx2 that are phosphorylated by Akt in breast cancer cells. Our results show that phosphorylation by Akt increases the binding of Runx2 protein to its target gene promoters and we identify the phosphorylation events that enhance DNA binding of Runx2. Our work establishes Runx2 protein as a critical effecter downstream of Akt that regulates breast cancer invasion.
In Chapter Three we describe the subnuclear localization of the tumor suppressor protein Runx3 during interphase and mitosis. We find that similar to other Runx family members, Runx3 protein resides in nuclear matrix associated foci during interphase. We delineate a subnuclear targeting signal that directs Runx3 to these nuclear matrix associated foci. Our work establishes that this association of Runx3 protein with the nuclear matrix plays a vital role in regulating its transcriptional activity.
Chromatin immunoprecipitation results show that Runx3 occupies rRNA promoters during interphase. We also find that Runx3 remains associated with chromosomes during mitosis and localizes with nucleolar organizing regions (NORs), reflecting an interaction with epigenetic potential.
This thesis provides novel insights into various mechanisms by which cells regulate the activity of Runx proteins.
|
Page generated in 0.0538 seconds