• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise da influência vertical de ondas de Rossby longas no Atlântico Sul / Analysis of the Vertical Influence of long Rossby waves in the South Atlantic

Yamashita, Márcio Katsumi 06 July 2012 (has links)
Ondas de Rossby longas são ondas de larga escala que se propagam para o oeste com escala espacial de algumas centenas a vários milhares de quilômetros e desempenham um papel crítico na regulação da circulação do oceano. Sua propagação promove deslocamentos verticais da termoclina, muitas vezes da ordem de dezenas de metros, e causa variações de altura da superfície do mar que podem ser observadas através de dados de satélites altimétricos. A hipótese deste estudo é que existe uma fração significativa da variabilidade da velocidade geostrófica na superfície, associada a sinais propagantes para oeste. Para testá-la avaliamos a variabilidade da velocidade geostrófica meridional na superfície induzida pela passagem dessas ondas. Filtros digitais são necessários para distinguir sinais propagantes dos não-propagantes e permitiu a seleção da componente propagante para oeste com período aproximado de 12 meses. Velocidade de fase cp, período P, comprimento de onda λ, amplitude quadrática média A e o percentual de variância explicada σ2 desta componente foram estimados nos locais onde identificamos ondas de Rossby longas do primeiro modo baroclínico. Selecionamos perfis Argo posicionados em diferentes fases da mesma onda para averiguar a influência da sua propagação nos campos de temperatura, salinidade e densidade. Os resultados revelaram que a onda de Rossby anual de 237 mm de altura pode alterar o campo de densidade com valores de até 0,3 kg m-3 numa faixa de 240 m ao nível picnoclina. A variância explicada da componente meridional da velocidade geostrófica propagante para oeste em relação ao sinal original revelou que de 40% a 71% do sinal se propaga para oeste, corroborando a hipótese. / Long Rossby waves are large-scale waves which propagate westward with spatial scale ranging from a few hundred to several thousand kilometers. These waves play a critical role in the adjustment of ocean circulation. Their propagation cause vertical displacements of the thermocline, often of tens meters, and cause variations of sea surface height that can be observed on satellite altimeters data. The hypothesis of this study is that there is a significant fraction of surface geostrophic velocity variability associated with westward propagating signals. To test it, we assessed the variability of the meridional geostrophic velocity at the surface induced by the passage of these waves. Digital filters are necessary to distinguish the propagating from non-propagating signals and allowed for the selection of the westward propagating component with an approximate period of about 12 months. Phase speed cp, period P, wavelength λ, mean square amplitude A and percentage of explained variance σ2 of this component were estimated where long Rossby waves from the first baroclinic mode were identified. We selected Argo profiles data positioned at different phases of the same wave to verify the influence of its propagation on temperature, salinity and density fields. The results showed that the annual Rossby wave of 237 mm height can change the density field with values up to 0.3 kg m-3 about 240 m at pycnoclin level. The explained variance of the westward meridional component of geostrophic velocity relative to the original signal revealed that 40% to 71% of the signal propagates westward, supporting the hypothesis.
2

Propagação de ondas de Rossby em dois modelos quase-geostróficos / Rossby waves propagation in two quasi-geostrophic models

Wandrey de Bortoli Watanabe 07 April 2016 (has links)
As ondas de Rossby são o mecanismo de ajuste às perturbações de grande escala dos fluidos geofísicos. Elas podem ser geradas localmente, forçadas pelo rotacional da tensão de cisalhamento do vento, ou remotamente, devido às perturbações na altura da picnoclina na borda leste. Medidas altimétricas da anomalia da altura do mar tem fornecido evidências robustas da existência destas ondas. Estudos recentes mostram que vórtices não lineares de mesoescala são responsáveis por uma grande parte da variabilidade dos registros altimétricos, tendo sido observados propagando juntamente com as ondas de Rossby. Os objetivos deste estudo são identificar (1) as regiões onde as ondas de Rossby longas lineares explicam as observações, (2) qual mecanismo de geração é dominante e (3) se as ondas propagam-se de forma contínua em condições de não linearidade. Um modelo linear de 1½ camada de ondas de Rossby forçado por dados de tensão de cisalhamento do vento de escaterômetros é utilizado para reproduzir as anomalia da altura do mar. As correlações entre os resultados do modelo linear e os dados altimétricos são de até 0,88. Os resultados sugerem que a dinâmica linear de ondas de Rossby longas explica uma parte significativa da variabilidade anual da anomalia da altura do mar nas regiões tropicais. A oscilação da picnoclina na borda leste é o principal mecanismo gerador de ondas de Rossby nos oceanos Atlântico e Índico, enquanto no Pacífico a fonte dominante das ondas é a forçante atmosférica local. Um modelo quase-geostrófico não linear é utilizado para analisar como as ondas de Rossby geradas na borda leste propagam-se e dissipam-se em condições idealizadas. Em latitudes mais baixas que 32°S, as ondas atravessam toda a bacia oceânica até adentrar a região de meandramento da corrente de borda oeste. Nesta região, a energia é espalhada em todas as bandas de frequência. As ondas de Rossby que estão na latitude crítica tem um papel intermediário na cascata de energia. Em latitudes mais altas que 32°S, as ondas de Rossby não cruzam a totalidade da bacia oceânica, tendo sua energia transferida para outros períodos em uma distância de pelo menos 1000 km da borda oeste. / Rossby waves are the large scale mechanism of adjustment to perturbations of geophysical fluids. They can be generated locally, due to forcing by wind stress curl, or remotely, due to perturbations in the pycnocline level at the eastern boundary. Altimetric measurements of sea level anomaly have been providing sturdy evidences of the existence of these waves. Recent studies argue that mesoscale eddies are responsible for a substantial amount of the variability of the altimeter records. Eddies have been shown to propagate along with Rossby waves. The purposes of this study are (1) to identify the regions where linear long Rossby waves explain the observations, (2) to determine which generation mechanism is dominant, and (3) to verify if these waves can continuously propagate in nonlinearity conditions. A linear 1½ layer model forced by scatterometer wind stress data has been used to reproduce the sea level anomaly. Correlations between the results of the linear model and the altimetric data are up to 0.88. Results suggest that the linear long Rossby wave dynamics explain a significant part of the sea level anomaly annual variability in the tropical oceans. The pycnocline fluctuations at the eastern boundary are the main mechanism of generation of Rossby waves in the Atlantic and Indian oceans. The local atmospheric forcing is the principal source of the waves in the Pacific Ocean. A quasi-geostrophic nonlinear model has been used to analyze how the Rossby waves generated at the eastern boundary propagate and dissipate in idealized conditions. In latitudes lower than 32°S, the waves cross all the ocean basin until entering the region where the western boundary current meanders. In this region, energy is scattered throughout the spectrum. The Rossby waves that are in their critical latitude have an intermediate role in the energy cascade. In latitudes higher than 32°S, the Rossby waves fail to completely cross the ocean basin. Their energy is transfered to other periods in a distance of at least 1000 km from the western boundary.
3

Análise da influência vertical de ondas de Rossby longas no Atlântico Sul / Analysis of the Vertical Influence of long Rossby waves in the South Atlantic

Márcio Katsumi Yamashita 06 July 2012 (has links)
Ondas de Rossby longas são ondas de larga escala que se propagam para o oeste com escala espacial de algumas centenas a vários milhares de quilômetros e desempenham um papel crítico na regulação da circulação do oceano. Sua propagação promove deslocamentos verticais da termoclina, muitas vezes da ordem de dezenas de metros, e causa variações de altura da superfície do mar que podem ser observadas através de dados de satélites altimétricos. A hipótese deste estudo é que existe uma fração significativa da variabilidade da velocidade geostrófica na superfície, associada a sinais propagantes para oeste. Para testá-la avaliamos a variabilidade da velocidade geostrófica meridional na superfície induzida pela passagem dessas ondas. Filtros digitais são necessários para distinguir sinais propagantes dos não-propagantes e permitiu a seleção da componente propagante para oeste com período aproximado de 12 meses. Velocidade de fase cp, período P, comprimento de onda λ, amplitude quadrática média A e o percentual de variância explicada σ2 desta componente foram estimados nos locais onde identificamos ondas de Rossby longas do primeiro modo baroclínico. Selecionamos perfis Argo posicionados em diferentes fases da mesma onda para averiguar a influência da sua propagação nos campos de temperatura, salinidade e densidade. Os resultados revelaram que a onda de Rossby anual de 237 mm de altura pode alterar o campo de densidade com valores de até 0,3 kg m-3 numa faixa de 240 m ao nível picnoclina. A variância explicada da componente meridional da velocidade geostrófica propagante para oeste em relação ao sinal original revelou que de 40% a 71% do sinal se propaga para oeste, corroborando a hipótese. / Long Rossby waves are large-scale waves which propagate westward with spatial scale ranging from a few hundred to several thousand kilometers. These waves play a critical role in the adjustment of ocean circulation. Their propagation cause vertical displacements of the thermocline, often of tens meters, and cause variations of sea surface height that can be observed on satellite altimeters data. The hypothesis of this study is that there is a significant fraction of surface geostrophic velocity variability associated with westward propagating signals. To test it, we assessed the variability of the meridional geostrophic velocity at the surface induced by the passage of these waves. Digital filters are necessary to distinguish the propagating from non-propagating signals and allowed for the selection of the westward propagating component with an approximate period of about 12 months. Phase speed cp, period P, wavelength λ, mean square amplitude A and percentage of explained variance σ2 of this component were estimated where long Rossby waves from the first baroclinic mode were identified. We selected Argo profiles data positioned at different phases of the same wave to verify the influence of its propagation on temperature, salinity and density fields. The results showed that the annual Rossby wave of 237 mm height can change the density field with values up to 0.3 kg m-3 about 240 m at pycnoclin level. The explained variance of the westward meridional component of geostrophic velocity relative to the original signal revealed that 40% to 71% of the signal propagates westward, supporting the hypothesis.
4

Propagação de ondas de Rossby em dois modelos quase-geostróficos / Rossby waves propagation in two quasi-geostrophic models

Watanabe, Wandrey de Bortoli 07 April 2016 (has links)
As ondas de Rossby são o mecanismo de ajuste às perturbações de grande escala dos fluidos geofísicos. Elas podem ser geradas localmente, forçadas pelo rotacional da tensão de cisalhamento do vento, ou remotamente, devido às perturbações na altura da picnoclina na borda leste. Medidas altimétricas da anomalia da altura do mar tem fornecido evidências robustas da existência destas ondas. Estudos recentes mostram que vórtices não lineares de mesoescala são responsáveis por uma grande parte da variabilidade dos registros altimétricos, tendo sido observados propagando juntamente com as ondas de Rossby. Os objetivos deste estudo são identificar (1) as regiões onde as ondas de Rossby longas lineares explicam as observações, (2) qual mecanismo de geração é dominante e (3) se as ondas propagam-se de forma contínua em condições de não linearidade. Um modelo linear de 1½ camada de ondas de Rossby forçado por dados de tensão de cisalhamento do vento de escaterômetros é utilizado para reproduzir as anomalia da altura do mar. As correlações entre os resultados do modelo linear e os dados altimétricos são de até 0,88. Os resultados sugerem que a dinâmica linear de ondas de Rossby longas explica uma parte significativa da variabilidade anual da anomalia da altura do mar nas regiões tropicais. A oscilação da picnoclina na borda leste é o principal mecanismo gerador de ondas de Rossby nos oceanos Atlântico e Índico, enquanto no Pacífico a fonte dominante das ondas é a forçante atmosférica local. Um modelo quase-geostrófico não linear é utilizado para analisar como as ondas de Rossby geradas na borda leste propagam-se e dissipam-se em condições idealizadas. Em latitudes mais baixas que 32°S, as ondas atravessam toda a bacia oceânica até adentrar a região de meandramento da corrente de borda oeste. Nesta região, a energia é espalhada em todas as bandas de frequência. As ondas de Rossby que estão na latitude crítica tem um papel intermediário na cascata de energia. Em latitudes mais altas que 32°S, as ondas de Rossby não cruzam a totalidade da bacia oceânica, tendo sua energia transferida para outros períodos em uma distância de pelo menos 1000 km da borda oeste. / Rossby waves are the large scale mechanism of adjustment to perturbations of geophysical fluids. They can be generated locally, due to forcing by wind stress curl, or remotely, due to perturbations in the pycnocline level at the eastern boundary. Altimetric measurements of sea level anomaly have been providing sturdy evidences of the existence of these waves. Recent studies argue that mesoscale eddies are responsible for a substantial amount of the variability of the altimeter records. Eddies have been shown to propagate along with Rossby waves. The purposes of this study are (1) to identify the regions where linear long Rossby waves explain the observations, (2) to determine which generation mechanism is dominant, and (3) to verify if these waves can continuously propagate in nonlinearity conditions. A linear 1½ layer model forced by scatterometer wind stress data has been used to reproduce the sea level anomaly. Correlations between the results of the linear model and the altimetric data are up to 0.88. Results suggest that the linear long Rossby wave dynamics explain a significant part of the sea level anomaly annual variability in the tropical oceans. The pycnocline fluctuations at the eastern boundary are the main mechanism of generation of Rossby waves in the Atlantic and Indian oceans. The local atmospheric forcing is the principal source of the waves in the Pacific Ocean. A quasi-geostrophic nonlinear model has been used to analyze how the Rossby waves generated at the eastern boundary propagate and dissipate in idealized conditions. In latitudes lower than 32°S, the waves cross all the ocean basin until entering the region where the western boundary current meanders. In this region, energy is scattered throughout the spectrum. The Rossby waves that are in their critical latitude have an intermediate role in the energy cascade. In latitudes higher than 32°S, the Rossby waves fail to completely cross the ocean basin. Their energy is transfered to other periods in a distance of at least 1000 km from the western boundary.
5

Verificação da linearidade da resposta oceânica à forçante do vento em larga escala / Verification of the linear ocean response to large scale wind forcing

Watanabe, Wandrey de Bortoli 01 October 2010 (has links)
A resposta oceânica a perturbações com períodos e comprimentos significativamente maiores que o período inercial e que o raio de deformação de Rossby se dá na forma de ondas de Rossby planetárias. Geralmente, as perturbações são atribuídas a variações no rotacional do vento via bombeamento de Ekman. A passagem dessas ondas causa deformação das isopicnais, podendo resultar em anomalias da temperatura da superfície do mar (TSM) por advecção vertical. Dependendo de como ocorre a interação ar-mar, anomalias de TSM podem alterar o campo de ventos ou serem alteradas por ele através de fluxo de calor. Este trabalho utiliza dez anos de dados de temperatura da superfície do mar, velocidade e direção dos ventos e anomalia da altura do mar obtidos por satélites para identificar regiões do oceano onde há forçamento direto do vento na geração de ondas planetárias que se propagam linearmente. Mapas de correlação cruzada entre essas variáveis permitiram identificar onde a interação entre o oceano e a atmosfera é linear. Um modelo simples de uma camada e meia forçado apenas pelo bombeamento de Ekman foi utilizado para testar se, nestas regiões, a variabilidade atmosférica seria suficiente para explicar a variabilidade das ondas de Rossby estimadas pelos dados altimétricos. A interação entre a TSM e a intensidade do vento no Atlântico sul tropical é distinta das demais bacias oceânicas. Das correlações entre a TSM e o rotacional da tensão de cisalhamento do vento, observou-se que a dinâmica de Ekman não é marcante no Índico. Nas regiões tropicais do Atlântico e do Pacífico, as previsões do modelo foram similares às observações. Por fim, foram obtidas evidências de geração e retroalimentação de ondas planetárias nas bordas leste do Atlântico e do Pacífico. / Rossby waves are the ocean response to perturbations whose temporal and spatial scales are significantly longer than both the inertial period and the Rossby radius of deformation. These perturbations are, more often than not, attributed to variations in the wind stress curl {\\em via} Ekman pumping. The waves cause isopycnal displacement which due to vertical advection may result in sea surface temperature (SST) anomalies. Depending on the ocean--atmosphere interaction, SST anomalies can either change the wind field or be changed by it due to the heat flux. This study makes use of ten years of satellite derived SST, wind vector, and sea surface height anomaly data to identify regions where there is direct wind forcing of linear Rossby waves. Cross-correlation maps between these variables show where linear interactions occur. A simple 1½ layer model forced by Ekman pumping was used to check if, in those regions, atmospheric variability alone can explain the observed Rossby wave variability as estimated from radar altimeter data. The interaction between SST and wind magnitude in the South Atlantic is distinct from all other ocean basins. SST and wind stress curl correlations show that the Ekman dynamics is not dominant in the Indian Ocean. In the tropical Atlantic and Pacific the model predictions are similar to the observations. Finally, evidence of genesis and feedback of planetary waves is presented for the eastern boundaries of the Atlantic and Pacific oceans.
6

Verificação da linearidade da resposta oceânica à forçante do vento em larga escala / Verification of the linear ocean response to large scale wind forcing

Wandrey de Bortoli Watanabe 01 October 2010 (has links)
A resposta oceânica a perturbações com períodos e comprimentos significativamente maiores que o período inercial e que o raio de deformação de Rossby se dá na forma de ondas de Rossby planetárias. Geralmente, as perturbações são atribuídas a variações no rotacional do vento via bombeamento de Ekman. A passagem dessas ondas causa deformação das isopicnais, podendo resultar em anomalias da temperatura da superfície do mar (TSM) por advecção vertical. Dependendo de como ocorre a interação ar-mar, anomalias de TSM podem alterar o campo de ventos ou serem alteradas por ele através de fluxo de calor. Este trabalho utiliza dez anos de dados de temperatura da superfície do mar, velocidade e direção dos ventos e anomalia da altura do mar obtidos por satélites para identificar regiões do oceano onde há forçamento direto do vento na geração de ondas planetárias que se propagam linearmente. Mapas de correlação cruzada entre essas variáveis permitiram identificar onde a interação entre o oceano e a atmosfera é linear. Um modelo simples de uma camada e meia forçado apenas pelo bombeamento de Ekman foi utilizado para testar se, nestas regiões, a variabilidade atmosférica seria suficiente para explicar a variabilidade das ondas de Rossby estimadas pelos dados altimétricos. A interação entre a TSM e a intensidade do vento no Atlântico sul tropical é distinta das demais bacias oceânicas. Das correlações entre a TSM e o rotacional da tensão de cisalhamento do vento, observou-se que a dinâmica de Ekman não é marcante no Índico. Nas regiões tropicais do Atlântico e do Pacífico, as previsões do modelo foram similares às observações. Por fim, foram obtidas evidências de geração e retroalimentação de ondas planetárias nas bordas leste do Atlântico e do Pacífico. / Rossby waves are the ocean response to perturbations whose temporal and spatial scales are significantly longer than both the inertial period and the Rossby radius of deformation. These perturbations are, more often than not, attributed to variations in the wind stress curl {\\em via} Ekman pumping. The waves cause isopycnal displacement which due to vertical advection may result in sea surface temperature (SST) anomalies. Depending on the ocean--atmosphere interaction, SST anomalies can either change the wind field or be changed by it due to the heat flux. This study makes use of ten years of satellite derived SST, wind vector, and sea surface height anomaly data to identify regions where there is direct wind forcing of linear Rossby waves. Cross-correlation maps between these variables show where linear interactions occur. A simple 1½ layer model forced by Ekman pumping was used to check if, in those regions, atmospheric variability alone can explain the observed Rossby wave variability as estimated from radar altimeter data. The interaction between SST and wind magnitude in the South Atlantic is distinct from all other ocean basins. SST and wind stress curl correlations show that the Ekman dynamics is not dominant in the Indian Ocean. In the tropical Atlantic and Pacific the model predictions are similar to the observations. Finally, evidence of genesis and feedback of planetary waves is presented for the eastern boundaries of the Atlantic and Pacific oceans.
7

Avaliação da composição modal dinâmica do interior geostrófico dos oceanos / Evaluation of the modal composition of the ocean\'s geostrophic interior

Laurindo, Lucas Cardoso 01 April 2011 (has links)
Este trabalho avalia a importância relativa dosmodos dinâmicos na composição da estrutura vertical do fluxo geostrófico e de suas anomalias em relação à média, com o objetivo de fornecer uma descrição das formas de estratificação predominantes na coluna de água e de identificar prováveis regiões de ocorrência de ondas de Rossby planetárias (OR) dos diversos modos dinâmicos. Raios de deformação internos são estimados para avaliar a possibilidade de interações não-lineares entre OR e as alterações da estratificação local forçadas por sua própria passagem. A análise proposta baseia-se em dados de densidade estimados a partir de perfis verticais de salinidade climatológicos aliados a perfis sintéticos de temperatura. Estes últimos são extrapolados verticalmente a partir de dados orbitais da temperatura da superfície do mar (TSM) e da anomalia da altura da superfície livre (h), segundo um método de reconstrução estatística desenvolvido para este estudo. O primeiro modo baroclínico é dominante tanto no fluxo total quanto em suas anomalias, respondendo em média por 30% da estrutura vertical de velocidade, sendo que este valor descresce aproximadamente por uma razão de três em modos superiores. O segundo modo é significativo ou mesmo dominante em algumas regiões, particularmente em latitudes próximas ao equador. O terceiro é evidente em algumas áreas localizadas, mas não assume papéis importantes em escala de bacia. O modo 0 responde por frações de 6 a 9%, mas é provável que estes resultados sejam subestimados pela metodologia aplicada. Anomalias verticais relacionadas ao primeiro modo coincidem com regiões onde OR longas do primeiro modo tem maior expressão, enquanto o segundo modo parece ser um marcador de OR curtas e ondas de instabilidade tropical. Fenômenos transientes associados ao terceiro modo são observados em áreas restritas dos três oceanos. A magnitude das variações dos raios internos em resposta à fenômenos transientes em algumas regiões implicam em variações significativas na velocidade de fase teórica de OR longas lineares, um indício de que efeitos não-lineares podem ser importantes. Por fim, amplificações da importância do modo barotrópico sobre feições topográficas significativas sugere a existência de mecanismos de transferência de energia entre modos dinâmicos induzidas pela interação com a batimetria. / This study evaluates the relative importance of the dynamical modes in the composition of the geostrophic flow and of its anomalies from the long-term average, respectively seeking to determine the dominant vertical stratification structures of the water column and to identify regions where planetary Rossby waves (RW) of different dynamical modes may most likely occur. The baroclinic Rossby radii of deformation are estimated to evaluate the possibility of nonlinear interactions between RWand changes of the local stratification forced by the wave\'s passing. This analysis is based on density data estimated from climatological salinity profiles and synthetic temperature profiles. The latter are vertically extrapolated for sea surface temperature (SST) and sea surface height anomaly (h) satellite data, using a statistical reconstruction method developed in this study. The first baroclinic mode dominates both the total geostrophic flow and its anomalies, accounting for 30% of the velocity\'s vertical structure on average, where this value decreases approximately by a factor of 3 in subsequent baroclinic orders. The second mode is significant or even dominant in some areas, particularly near the equator. The third mode is evident in some localized regions, but can be ignored at basin-scales. The barotropic mode accounts for 6 to 9% fractions on average, however these values are probably underestimated by the used methods. Vertical anomalies related to the first baroclinic mode coincide with regions where long RWs answers for a significant fraction of local variance, while the second mode highlights zones where short RWs and tropical instability waves are reported. Transient phenomena related with the third mode are observed in comparatively small areas on all three oceans. The magnitude of the baroclinic radii\'s variations in response of the transient variability results in significant changes of the theorethical phase speed for long linear RWs, an evidence that nonlinear effects may be important. Lastly, the greater significance of the barotropic mode over proeminent bottom features suggests the existence of energy transfer mechanisms between dynamical modes triggered by the interaction with the bathymetry.
8

Avaliação da composição modal dinâmica do interior geostrófico dos oceanos / Evaluation of the modal composition of the ocean\'s geostrophic interior

Lucas Cardoso Laurindo 01 April 2011 (has links)
Este trabalho avalia a importância relativa dosmodos dinâmicos na composição da estrutura vertical do fluxo geostrófico e de suas anomalias em relação à média, com o objetivo de fornecer uma descrição das formas de estratificação predominantes na coluna de água e de identificar prováveis regiões de ocorrência de ondas de Rossby planetárias (OR) dos diversos modos dinâmicos. Raios de deformação internos são estimados para avaliar a possibilidade de interações não-lineares entre OR e as alterações da estratificação local forçadas por sua própria passagem. A análise proposta baseia-se em dados de densidade estimados a partir de perfis verticais de salinidade climatológicos aliados a perfis sintéticos de temperatura. Estes últimos são extrapolados verticalmente a partir de dados orbitais da temperatura da superfície do mar (TSM) e da anomalia da altura da superfície livre (h), segundo um método de reconstrução estatística desenvolvido para este estudo. O primeiro modo baroclínico é dominante tanto no fluxo total quanto em suas anomalias, respondendo em média por 30% da estrutura vertical de velocidade, sendo que este valor descresce aproximadamente por uma razão de três em modos superiores. O segundo modo é significativo ou mesmo dominante em algumas regiões, particularmente em latitudes próximas ao equador. O terceiro é evidente em algumas áreas localizadas, mas não assume papéis importantes em escala de bacia. O modo 0 responde por frações de 6 a 9%, mas é provável que estes resultados sejam subestimados pela metodologia aplicada. Anomalias verticais relacionadas ao primeiro modo coincidem com regiões onde OR longas do primeiro modo tem maior expressão, enquanto o segundo modo parece ser um marcador de OR curtas e ondas de instabilidade tropical. Fenômenos transientes associados ao terceiro modo são observados em áreas restritas dos três oceanos. A magnitude das variações dos raios internos em resposta à fenômenos transientes em algumas regiões implicam em variações significativas na velocidade de fase teórica de OR longas lineares, um indício de que efeitos não-lineares podem ser importantes. Por fim, amplificações da importância do modo barotrópico sobre feições topográficas significativas sugere a existência de mecanismos de transferência de energia entre modos dinâmicos induzidas pela interação com a batimetria. / This study evaluates the relative importance of the dynamical modes in the composition of the geostrophic flow and of its anomalies from the long-term average, respectively seeking to determine the dominant vertical stratification structures of the water column and to identify regions where planetary Rossby waves (RW) of different dynamical modes may most likely occur. The baroclinic Rossby radii of deformation are estimated to evaluate the possibility of nonlinear interactions between RWand changes of the local stratification forced by the wave\'s passing. This analysis is based on density data estimated from climatological salinity profiles and synthetic temperature profiles. The latter are vertically extrapolated for sea surface temperature (SST) and sea surface height anomaly (h) satellite data, using a statistical reconstruction method developed in this study. The first baroclinic mode dominates both the total geostrophic flow and its anomalies, accounting for 30% of the velocity\'s vertical structure on average, where this value decreases approximately by a factor of 3 in subsequent baroclinic orders. The second mode is significant or even dominant in some areas, particularly near the equator. The third mode is evident in some localized regions, but can be ignored at basin-scales. The barotropic mode accounts for 6 to 9% fractions on average, however these values are probably underestimated by the used methods. Vertical anomalies related to the first baroclinic mode coincide with regions where long RWs answers for a significant fraction of local variance, while the second mode highlights zones where short RWs and tropical instability waves are reported. Transient phenomena related with the third mode are observed in comparatively small areas on all three oceans. The magnitude of the baroclinic radii\'s variations in response of the transient variability results in significant changes of the theorethical phase speed for long linear RWs, an evidence that nonlinear effects may be important. Lastly, the greater significance of the barotropic mode over proeminent bottom features suggests the existence of energy transfer mechanisms between dynamical modes triggered by the interaction with the bathymetry.

Page generated in 0.4145 seconds