• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um filtro iterativo utilizando árvores de decisão / An Iterative Decision Tree Threshold Filter

Picchi Netto, Oscar 24 September 2013 (has links)
Usar algoritmos de Aprendizado de Máquina é um dos modos ecientes de extrair as informações de grandes bases biológicas. Sabendo-se que a quantidade de dados que são coletados cresce a cada dia, o uso de alguma técnica de seleção de atributos eficiente é, em alguns casos, essencial não só para otimizar o tempo do algoritmo de Aprendizado da Máquina a ser aplicado posteriormente como também para reduzir os dados, de forma que possa ser possível testá-los, por exemplo, em uma bancada de laboratório em algumas situações específicas. O objetivo deste estudo é propor uma abordagem utilizando árvores de decisão em um filtro iterativo, visando auxiliar na extração de informação de grande bases biológicas. Pois, com uma base de menor dimensionalidade, um especialista humano pode entender melhor ou ainda utilizar um algoritmo de Aprendizado de Máquina de forma mais eficaz. O filtro proposto pode utilizar qualquer classificador com um seletor de atributos embutido e qualquer métrica pode ser utilizada para determinar se o atributo deve ser escolhido. Foi fixado, neste estudo, o algoritmo utilizado como J48 e a área embaixo da curva ROC (AUC) como métrica. Em experimentos utilizando diversas bases de dados biomédicas, o filtro proposto foi analisado e sua capacidade de compressão e desempenho foram avaliados em cinco diferentes paradigmas de aprendizado de máquina, utilizando dois limiares diferentes para a métrica escolhida. O melhor limiar obteve uma capacidade de compressão de cerca de 50% dos dados em geral e 99.4% em bases de baixa densidade, geralmente grandes bases. Os valores AUC obtidos pelo filtro quando comparados com cinco algoritmos de paradigmas de aprendizado diferentes mostraram um desempenho melhor em quatro das cinco situações avaliadas. O filtro proposto foi depois analisado e comparado com outros seletores de atributos da literatura e o indutor sozinho. Quanto ao tempo gasto pelo filtro em relação aos outros ele se apresentou no mesmo patamar de 3 dos 4 seletores testados. Quando comparado em relação ao AUC o filtro proposto se mostrou robusto nos cinco indutores analisados, não apresentando nenhuma diferença significativa em nenhum dos cenários testados. Em relação aos indutores, o filtro apresentou um desempenho melhor, mesmo que não significante, em 4 dos 5 indutores. / Using Machine Learning algorithms is an eficient way to extract information from large biological databases. But, in some cases, the amount of data is huge that using an eficient featured subset selection is, in some cases, essencial not only to optimize the learning time but also to reduce the amount of data, allowing, for example, a test in a laboratory workbench. The objective of this study is to propose an approach using decision trees in a iterative filter. The filter helps information extraction from large biological databases, since in a database with few dimensions a human specialist can understand it better or can use Machine Learning algorithms in a more efective way. The proposed lter can use any classier with embed featured subset selection and can use any performance metric to determine which attribute must be chosen. In this study, we have fixed the algorithm used within the filter as J48 and AUC was used as metric for performance evaluation. In experiments using biomedical databases, the proposed filter was analyzed and its compression capacity and performance were tested. In five diferent Machine Learning paradigms, using two diferent thresholds for the chosen metric. The best threshold was capable of reducing around 50% of the data using all databases and 99.4% on the small density bases, usually high dimensional databases. AUC values for the filter when compared with the five algorithm got a better performance in four of five tested situations. The proposed filter then was tested against others featured subset selectors from the literature, and against the inducer alone. Analyzing time the proposed lter is in the same level as 3 of 4 of the tested selectors. When tested for AUC the proposed selector shows itself robust in the five inducers tested, not showing any signicant diference in all tested scenarios. Against the inducers alone our filter showed a better performance, even not signicant, in 4 of the 5 inducers.
2

Um filtro iterativo utilizando árvores de decisão / An Iterative Decision Tree Threshold Filter

Oscar Picchi Netto 24 September 2013 (has links)
Usar algoritmos de Aprendizado de Máquina é um dos modos ecientes de extrair as informações de grandes bases biológicas. Sabendo-se que a quantidade de dados que são coletados cresce a cada dia, o uso de alguma técnica de seleção de atributos eficiente é, em alguns casos, essencial não só para otimizar o tempo do algoritmo de Aprendizado da Máquina a ser aplicado posteriormente como também para reduzir os dados, de forma que possa ser possível testá-los, por exemplo, em uma bancada de laboratório em algumas situações específicas. O objetivo deste estudo é propor uma abordagem utilizando árvores de decisão em um filtro iterativo, visando auxiliar na extração de informação de grande bases biológicas. Pois, com uma base de menor dimensionalidade, um especialista humano pode entender melhor ou ainda utilizar um algoritmo de Aprendizado de Máquina de forma mais eficaz. O filtro proposto pode utilizar qualquer classificador com um seletor de atributos embutido e qualquer métrica pode ser utilizada para determinar se o atributo deve ser escolhido. Foi fixado, neste estudo, o algoritmo utilizado como J48 e a área embaixo da curva ROC (AUC) como métrica. Em experimentos utilizando diversas bases de dados biomédicas, o filtro proposto foi analisado e sua capacidade de compressão e desempenho foram avaliados em cinco diferentes paradigmas de aprendizado de máquina, utilizando dois limiares diferentes para a métrica escolhida. O melhor limiar obteve uma capacidade de compressão de cerca de 50% dos dados em geral e 99.4% em bases de baixa densidade, geralmente grandes bases. Os valores AUC obtidos pelo filtro quando comparados com cinco algoritmos de paradigmas de aprendizado diferentes mostraram um desempenho melhor em quatro das cinco situações avaliadas. O filtro proposto foi depois analisado e comparado com outros seletores de atributos da literatura e o indutor sozinho. Quanto ao tempo gasto pelo filtro em relação aos outros ele se apresentou no mesmo patamar de 3 dos 4 seletores testados. Quando comparado em relação ao AUC o filtro proposto se mostrou robusto nos cinco indutores analisados, não apresentando nenhuma diferença significativa em nenhum dos cenários testados. Em relação aos indutores, o filtro apresentou um desempenho melhor, mesmo que não significante, em 4 dos 5 indutores. / Using Machine Learning algorithms is an eficient way to extract information from large biological databases. But, in some cases, the amount of data is huge that using an eficient featured subset selection is, in some cases, essencial not only to optimize the learning time but also to reduce the amount of data, allowing, for example, a test in a laboratory workbench. The objective of this study is to propose an approach using decision trees in a iterative filter. The filter helps information extraction from large biological databases, since in a database with few dimensions a human specialist can understand it better or can use Machine Learning algorithms in a more efective way. The proposed lter can use any classier with embed featured subset selection and can use any performance metric to determine which attribute must be chosen. In this study, we have fixed the algorithm used within the filter as J48 and AUC was used as metric for performance evaluation. In experiments using biomedical databases, the proposed filter was analyzed and its compression capacity and performance were tested. In five diferent Machine Learning paradigms, using two diferent thresholds for the chosen metric. The best threshold was capable of reducing around 50% of the data using all databases and 99.4% on the small density bases, usually high dimensional databases. AUC values for the filter when compared with the five algorithm got a better performance in four of five tested situations. The proposed filter then was tested against others featured subset selectors from the literature, and against the inducer alone. Analyzing time the proposed lter is in the same level as 3 of 4 of the tested selectors. When tested for AUC the proposed selector shows itself robust in the five inducers tested, not showing any signicant diference in all tested scenarios. Against the inducers alone our filter showed a better performance, even not signicant, in 4 of the 5 inducers.
3

Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n ) / Comparison of estimation methods for problems with collinear and/or high dimensionality (p > n)

Casagrande, Marcelo Henrique 29 April 2016 (has links)
Este trabalho apresenta um estudo comparativo do poder de predição de quatro métodos de regressão adequados para situações nas quais os dados, dispostos na matriz de planejamento, apresentam sérios problemas de multicolinearidade e/ou de alta dimensionalidade, em que o número de covariáveis é maior do que o número de observações. No presente trabalho, os métodos abordados são: regressão por componentes principais, regressão por mínimos quadrados parciais, regressão ridge e LASSO. O trabalho engloba simulações, em que o poder preditivo de cada uma das técnicas é avaliado para diferentes cenários definidos por número de covariáveis, tamanho de amostra e quantidade e intensidade de coeficientes (efeitos) significativos, destacando as principais diferenças entre os métodos e possibilitando a criação de um guia para que o usuário possa escolher qual metodologia usar com base em algum conhecimento prévio que o mesmo possa ter. Uma aplicação em dados reais (não simulados) também é abordada. / This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or highdimensionality, wherein the number of covariatesis greater the number of observations. In this study, the methods discussed are: principal component regression,partial least squares regression,ridge regression and LASSO. The work includes simulations, where in the predictive power of each of the techniques is evaluated for different scenarios defined by the number of covariates, sample size and quantity and intensity ratios (effects) significant, high lighting the main dffierences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An applicationon real data (not simulated) is also addressed.
4

Data mining in large sets of complex data / Mineração de dados em grande conjuntos de dados complexos

Cordeiro, Robson Leonardo Ferreira 29 August 2011 (has links)
Due to the increasing amount and complexity of the data stored in the enterprises\' databases, the task of knowledge discovery is nowadays vital to support strategic decisions. However, the mining techniques used in the process usually have high computational costs that come from the need to explore several alternative solutions, in different combinations, to obtain the desired knowledge. The most common mining tasks include data classification, labeling and clustering, outlier detection and missing data prediction. Traditionally, the data are represented by numerical or categorical attributes in a table that describes one element in each tuple. Although the same tasks applied to traditional data are also necessary for more complex data, such as images, graphs, audio and long texts, the complexity and the computational costs associated to handling large amounts of these complex data increase considerably, making most of the existing techniques impractical. Therefore, especial data mining techniques for this kind of data need to be developed. This Ph.D. work focuses on the development of new data mining techniques for large sets of complex data, especially for the task of clustering, tightly associated to other data mining tasks that are performed together. Specifically, this Doctoral dissertation presents three novel, fast and scalable data mining algorithms well-suited to analyze large sets of complex data: the method Halite for correlation clustering; the method BoW for clustering Terabyte-scale datasets; and the method QMAS for labeling and summarization. Our algorithms were evaluated on real, very large datasets with up to billions of complex elements, and they always presented highly accurate results, being at least one order of magnitude faster than the fastest related works in almost all cases. The real data used come from the following applications: automatic breast cancer diagnosis, satellite imagery analysis, and graph mining on a large web graph crawled by Yahoo! and also on the graph with all users and their connections from the Twitter social network. Such results indicate that our algorithms allow the development of real time applications that, potentially, could not be developed without this Ph.D. work, like a software to aid on the fly the diagnosis process in a worldwide Healthcare Information System, or a system to look for deforestation within the Amazon Rainforest in real time / O crescimento em quantidade e complexidade dos dados armazenados nas organizações torna a extração de conhecimento utilizando técnicas de mineração uma tarefa ao mesmo tempo fundamental para aproveitar bem esses dados na tomada de decisões estratégicas e de alto custo computacional. O custo vem da necessidade de se explorar uma grande quantidade de casos de estudo, em diferentes combinações, para se obter o conhecimento desejado. Tradicionalmente, os dados a explorar são representados como atributos numéricos ou categóricos em uma tabela, que descreve em cada tupla um caso de teste do conjunto sob análise. Embora as mesmas tarefas desenvolvidas para dados tradicionais sejam também necessárias para dados mais complexos, como imagens, grafos, áudio e textos longos, a complexidade das análises e o custo computacional envolvidos aumentam significativamente, inviabilizando a maioria das técnicas de análise atuais quando aplicadas a grandes quantidades desses dados complexos. Assim, técnicas de mineração especiais devem ser desenvolvidas. Este Trabalho de Doutorado visa a criação de novas técnicas de mineração para grandes bases de dados complexos. Especificamente, foram desenvolvidas duas novas técnicas de agrupamento e uma nova técnica de rotulação e sumarização que são rápidas, escaláveis e bem adequadas à análise de grandes bases de dados complexos. As técnicas propostas foram avaliadas para a análise de bases de dados reais, em escala de Terabytes de dados, contendo até bilhões de objetos complexos, e elas sempre apresentaram resultados de alta qualidade, sendo em quase todos os casos pelo menos uma ordem de magnitude mais rápidas do que os trabalhos relacionados mais eficientes. Os dados reais utilizados vêm das seguintes aplicações: diagnóstico automático de câncer de mama, análise de imagens de satélites, e mineração de grafos aplicada a um grande grafo da web coletado pelo Yahoo! e também a um grafo com todos os usuários da rede social Twitter e suas conexões. Tais resultados indicam que nossos algoritmos permitem a criação de aplicações em tempo real que, potencialmente, não poderiam ser desenvolvidas sem a existência deste Trabalho de Doutorado, como por exemplo, um sistema em escala global para o auxílio ao diagnóstico médico em tempo real, ou um sistema para a busca por áreas de desmatamento na Floresta Amazônica em tempo real
5

Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n)

Casagrande, Marcelo Henrique 29 April 2016 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-10-06T11:48:12Z No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:58:41Z (GMT) No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:58:47Z (GMT) No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) / Made available in DSpace on 2016-10-20T13:58:52Z (GMT). No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) Previous issue date: 2016-04-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or high dimensionality, wherein the number of covariates is greater the number of observations. In this study, the methods discussed are: principal component regression, partial least squares regression, ridge regression and LASSO. The work includes simulations, wherein the predictive power of each of the techniques is evaluated for di erent scenarios de ned by the number of covariates, sample size and quantity and intensity ratios (e ects) signi cant, highlighting the main di erences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An application on real data (not simulated) is also addressed. / Este trabalho apresenta um estudo comparativo do poder de predi c~ao de quatro m etodos de regress~ao adequados para situa c~oes nas quais os dados, dispostos na matriz de planejamento, apresentam s erios problemas de multicolinearidade e/ou de alta dimensionalidade, em que o n umero de covari aveis e maior do que o n umero de observa c~oes. No presente trabalho, os m etodos abordados s~ao: regress~ao por componentes principais, regress~ao por m nimos quadrados parciais, regress~ao ridge e LASSO. O trabalho engloba simula c~oes, em que o poder preditivo de cada uma das t ecnicas e avaliado para diferentes cen arios de nidos por n umero de covari aveis, tamanho de amostra e quantidade e intensidade de coe cientes (efeitos) signi cativos, destacando as principais diferen cas entre os m etodos e possibilitando a cria c~ao de um guia para que o usu ario possa escolher qual metodologia usar com base em algum conhecimento pr evio que o mesmo possa ter. Uma aplica c~ao em dados reais (n~ao simulados) tamb em e abordada
6

Data mining in large sets of complex data / Mineração de dados em grande conjuntos de dados complexos

Robson Leonardo Ferreira Cordeiro 29 August 2011 (has links)
Due to the increasing amount and complexity of the data stored in the enterprises\' databases, the task of knowledge discovery is nowadays vital to support strategic decisions. However, the mining techniques used in the process usually have high computational costs that come from the need to explore several alternative solutions, in different combinations, to obtain the desired knowledge. The most common mining tasks include data classification, labeling and clustering, outlier detection and missing data prediction. Traditionally, the data are represented by numerical or categorical attributes in a table that describes one element in each tuple. Although the same tasks applied to traditional data are also necessary for more complex data, such as images, graphs, audio and long texts, the complexity and the computational costs associated to handling large amounts of these complex data increase considerably, making most of the existing techniques impractical. Therefore, especial data mining techniques for this kind of data need to be developed. This Ph.D. work focuses on the development of new data mining techniques for large sets of complex data, especially for the task of clustering, tightly associated to other data mining tasks that are performed together. Specifically, this Doctoral dissertation presents three novel, fast and scalable data mining algorithms well-suited to analyze large sets of complex data: the method Halite for correlation clustering; the method BoW for clustering Terabyte-scale datasets; and the method QMAS for labeling and summarization. Our algorithms were evaluated on real, very large datasets with up to billions of complex elements, and they always presented highly accurate results, being at least one order of magnitude faster than the fastest related works in almost all cases. The real data used come from the following applications: automatic breast cancer diagnosis, satellite imagery analysis, and graph mining on a large web graph crawled by Yahoo! and also on the graph with all users and their connections from the Twitter social network. Such results indicate that our algorithms allow the development of real time applications that, potentially, could not be developed without this Ph.D. work, like a software to aid on the fly the diagnosis process in a worldwide Healthcare Information System, or a system to look for deforestation within the Amazon Rainforest in real time / O crescimento em quantidade e complexidade dos dados armazenados nas organizações torna a extração de conhecimento utilizando técnicas de mineração uma tarefa ao mesmo tempo fundamental para aproveitar bem esses dados na tomada de decisões estratégicas e de alto custo computacional. O custo vem da necessidade de se explorar uma grande quantidade de casos de estudo, em diferentes combinações, para se obter o conhecimento desejado. Tradicionalmente, os dados a explorar são representados como atributos numéricos ou categóricos em uma tabela, que descreve em cada tupla um caso de teste do conjunto sob análise. Embora as mesmas tarefas desenvolvidas para dados tradicionais sejam também necessárias para dados mais complexos, como imagens, grafos, áudio e textos longos, a complexidade das análises e o custo computacional envolvidos aumentam significativamente, inviabilizando a maioria das técnicas de análise atuais quando aplicadas a grandes quantidades desses dados complexos. Assim, técnicas de mineração especiais devem ser desenvolvidas. Este Trabalho de Doutorado visa a criação de novas técnicas de mineração para grandes bases de dados complexos. Especificamente, foram desenvolvidas duas novas técnicas de agrupamento e uma nova técnica de rotulação e sumarização que são rápidas, escaláveis e bem adequadas à análise de grandes bases de dados complexos. As técnicas propostas foram avaliadas para a análise de bases de dados reais, em escala de Terabytes de dados, contendo até bilhões de objetos complexos, e elas sempre apresentaram resultados de alta qualidade, sendo em quase todos os casos pelo menos uma ordem de magnitude mais rápidas do que os trabalhos relacionados mais eficientes. Os dados reais utilizados vêm das seguintes aplicações: diagnóstico automático de câncer de mama, análise de imagens de satélites, e mineração de grafos aplicada a um grande grafo da web coletado pelo Yahoo! e também a um grafo com todos os usuários da rede social Twitter e suas conexões. Tais resultados indicam que nossos algoritmos permitem a criação de aplicações em tempo real que, potencialmente, não poderiam ser desenvolvidas sem a existência deste Trabalho de Doutorado, como por exemplo, um sistema em escala global para o auxílio ao diagnóstico médico em tempo real, ou um sistema para a busca por áreas de desmatamento na Floresta Amazônica em tempo real
7

Um estudo sobre o papel de medidas de similaridade em visualização de coleções de documentos / A study on the role of similarity measures in visual text analytics

Salazar, Frizzi Alejandra San Roman 27 September 2012 (has links)
Técnicas de visualização de informação, tais como as que utilizam posicionamento de pontos baseado na similaridade do conteúdo, são utilizadas para criar representações visuais de dados que evidenciem certos padrões. Essas técnicas são sensíveis à qualidade dos dados, a qual, por sua vez, depende de uma etapa de pré-processamento muito influente. Esta etapa envolve a limpeza do texto e, em alguns casos, a detecção de termos e seus pesos, bem como a definição de uma função de (dis)similaridade. Poucos são os estudos realizados sobre como esses cálculos de (dis)similaridade afetam a qualidade das representações visuais geradas para dados textuais. Este trabalho apresenta um estudo sobre o papel das diferentes medidas de (dis)similaridade entre pares de textos na geração de mapas visuais. Nos concentramos principalmente em dois tipos de funções de distância, aquelas computadas a partir da representação vetorial do texto (Vector Space Model (VSM)) e em medidas de comparação direta de strings textuais. Comparamos o efeito na geração de mapas visuais com técnicas de posicionamento de pontos, utilizando as duas abordagens. Para isso, foram utilizadas medidas objetivas para comparar a qualidade visual dos mapas, tais como Neighborhood Hit (NH) e Coeficiente de Silhueta (CS). Descobrimos que ambas as abordagens têm pontos a favor, mas de forma geral, o VSM apresentou melhores resultados quanto à discriminação de classes. Porém, a VSM convencional não é incremental, ou seja, novas adições à coleção forçam o recálculo do espaço de dados e das dissimilaridades anteriormente computadas. Nesse sentido, um novo modelo incremental baseado no VSM (Incremental Vector Space Model (iVSM)) foi considerado em nossos estudos comparativos. O iVSM apresentou os melhores resultados quantitativos e qualitativos em diversas configurações testadas. Os resultados da avaliação são apresentados e recomendações sobre a aplicação de diferentes medidas de similaridade de texto em tarefas de análise visual, são oferecidas / Information visualization techniques, such as similarity based point placement, are used for generating of visual data representation that evidence some patterns. These techniques are sensitive to data quality, which depends of a very influential preprocessing step. This step involves cleaning the text and in some cases, detecting terms and their weights, as well as definiting a (dis)similarity function. There are few studies on how these (dis)similarity calculations aect the quality of visual representations for textual data. This work presents a study on the role of the various (dis)similarity measures in generating visual maps. We focus primarily on two types of distance functions, those based on vector representations of the text (Vector Space Model (VSM)) and measures obtained from direct comparison of text strings, comparing the effect on the visual maps obtained with point placement techniques with the two approaches. For this, objective measures were employed to compare the visual quality of the generated maps, such as the Neighborhood Hit and Silhouette Coefficient. We found that both approaches have strengths, but in general, the VSM showed better results as far as class discrimination is concerned. However, the conventional VSM is not incremental, i.e., new additions to the collection force the recalculation of the data space and dissimilarities previously computed. Thus, a new model based on incremental VSM (Incremental Vector Space Model (iVSM)) has been also considered in our comparative studies. iVSM showed the best quantitative and qualitative results in several of the configurations considered. The evaluation results are presented and recommendations on the application of different similarity measures for text analysis tasks visually are provided
8

Um estudo sobre o papel de medidas de similaridade em visualização de coleções de documentos / A study on the role of similarity measures in visual text analytics

Frizzi Alejandra San Roman Salazar 27 September 2012 (has links)
Técnicas de visualização de informação, tais como as que utilizam posicionamento de pontos baseado na similaridade do conteúdo, são utilizadas para criar representações visuais de dados que evidenciem certos padrões. Essas técnicas são sensíveis à qualidade dos dados, a qual, por sua vez, depende de uma etapa de pré-processamento muito influente. Esta etapa envolve a limpeza do texto e, em alguns casos, a detecção de termos e seus pesos, bem como a definição de uma função de (dis)similaridade. Poucos são os estudos realizados sobre como esses cálculos de (dis)similaridade afetam a qualidade das representações visuais geradas para dados textuais. Este trabalho apresenta um estudo sobre o papel das diferentes medidas de (dis)similaridade entre pares de textos na geração de mapas visuais. Nos concentramos principalmente em dois tipos de funções de distância, aquelas computadas a partir da representação vetorial do texto (Vector Space Model (VSM)) e em medidas de comparação direta de strings textuais. Comparamos o efeito na geração de mapas visuais com técnicas de posicionamento de pontos, utilizando as duas abordagens. Para isso, foram utilizadas medidas objetivas para comparar a qualidade visual dos mapas, tais como Neighborhood Hit (NH) e Coeficiente de Silhueta (CS). Descobrimos que ambas as abordagens têm pontos a favor, mas de forma geral, o VSM apresentou melhores resultados quanto à discriminação de classes. Porém, a VSM convencional não é incremental, ou seja, novas adições à coleção forçam o recálculo do espaço de dados e das dissimilaridades anteriormente computadas. Nesse sentido, um novo modelo incremental baseado no VSM (Incremental Vector Space Model (iVSM)) foi considerado em nossos estudos comparativos. O iVSM apresentou os melhores resultados quantitativos e qualitativos em diversas configurações testadas. Os resultados da avaliação são apresentados e recomendações sobre a aplicação de diferentes medidas de similaridade de texto em tarefas de análise visual, são oferecidas / Information visualization techniques, such as similarity based point placement, are used for generating of visual data representation that evidence some patterns. These techniques are sensitive to data quality, which depends of a very influential preprocessing step. This step involves cleaning the text and in some cases, detecting terms and their weights, as well as definiting a (dis)similarity function. There are few studies on how these (dis)similarity calculations aect the quality of visual representations for textual data. This work presents a study on the role of the various (dis)similarity measures in generating visual maps. We focus primarily on two types of distance functions, those based on vector representations of the text (Vector Space Model (VSM)) and measures obtained from direct comparison of text strings, comparing the effect on the visual maps obtained with point placement techniques with the two approaches. For this, objective measures were employed to compare the visual quality of the generated maps, such as the Neighborhood Hit and Silhouette Coefficient. We found that both approaches have strengths, but in general, the VSM showed better results as far as class discrimination is concerned. However, the conventional VSM is not incremental, i.e., new additions to the collection force the recalculation of the data space and dissimilarities previously computed. Thus, a new model based on incremental VSM (Incremental Vector Space Model (iVSM)) has been also considered in our comparative studies. iVSM showed the best quantitative and qualitative results in several of the configurations considered. The evaluation results are presented and recommendations on the application of different similarity measures for text analysis tasks visually are provided
9

Mapas auto-organizáveis com topologioa variante no tempo para categorização em subespaços em dados de alta dimensionalidade e vistas múltiplas

ANTONINO, Victor Oliveira 16 August 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-24T15:04:03Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) mapas-auto-organizaveis2.pdf: 2835656 bytes, checksum: 8836a86bd2cced9353cb25b53383b305 (MD5) / Made available in DSpace on 2017-04-24T15:04:03Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) mapas-auto-organizaveis2.pdf: 2835656 bytes, checksum: 8836a86bd2cced9353cb25b53383b305 (MD5) Previous issue date: 2016-08-16 / Métodos e algoritmos em aprendizado de máquina não supervisionado têm sido empregados em diversos problemas significativos. Uma explosão na disponibilidade de dados de várias fontes e modalidades está correlacionada com os avanços na obtenção, compressão, armazenamento, transferência e processamento de grandes quantidades de dados complexos com alta dimensionalidade, como imagens digitais, vídeos de vigilância e microarranjos de DNA. O agrupamento se torna difícil devido à crescente dispersão desses dados, bem como a dificuldade crescente em discriminar distâncias entre os pontos de dados. Este trabalho apresenta um algoritmo de agrupamento suave em subespaços baseado em um mapa auto-organizável (SOM) com estrutura variante no tempo, o que significa que o agrupamento dos dados pode ser alcançado sem qualquer conhecimento prévio, tais como o número de categorias ou a topologia dos padrões de entrada, nos quais ambos são determinados durante o processo de treinamento. O modelo também atribui diferentes pesos a diferentes dimensões, o que implica que cada dimensão contribui para o descobrimento dos aglomerados de dados. Para validar o modelo, diversos conjuntos de dados reais foram utilizados, considerando uma diversificada gama de contextos, tais como mineração de dados, expressão genética, agrupamento multivista e problemas de visão computacional. Os resultados são promissores e conseguem lidar com dados reais caracterizados pela alta dimensionalidade. / Unsupervised learning methods have been employed on many significant problems. A blast in the availability of data from multiple sources and modalities is correlated with advancements in how to obtain, compress, store, transfer, and process large amounts of complex high-dimensional data, such as digital images, surveillance videos, and DNA microarrays. Clustering becomes challenging due to the increasing sparsity of such data, as well as the increasing difficulty in discriminating distances between data points. This work presents a soft subspace clustering algorithm based on a self-organizing map (SOM) with time-variant structure, meaning that clustering data can be achieved without any prior knowledge such as the number of categories or input data topology, in which both are determined during the training process. The model also assigns different weights to different dimensions, this implies that every dimension contributes to uncover clusters. To validate the model, we used a number of real-world data sets, considering a diverse range of contexts such as data mining, gene expression, multi-view and computer vision problems. The promising results can handle real-world data characterized by high dimensionality.
10

[en] FORECASTING AMERICAN INDUSTRIAL PRODUCTION WITH HIGH DIMENSIONAL ENVIRONMENTS FROM FINANCIAL MARKETS, SENTIMENTS, EXPECTATIONS, AND ECONOMIC VARIABLES / [pt] PREVENDO A PRODUÇÃO INDUSTRIAL AMERICANA EM AMBIENTES DE ALTA DIMENSIONALIDADE, ATRAVÉS DE MERCADOS FINANCEIROS, SENTIMENTOS, EXPECTATIVAS E VARIÁVEIS ECONÔMICAS

EDUARDO OLIVEIRA MARINHO 20 February 2020 (has links)
[pt] O presente trabalho traz 6 diferentes técnicas de previsão para a variação mensal do Índice da Produção Industrial americana em 3 ambientes diferentes totalizando 18 modelos. No primeiro ambiente foram usados como variáveis explicativas a própria defasagem da variação mensal do Índice da produção industrial e outras 55 variáveis de mercado e de expectativa tais quais retornos setoriais, prêmio de risco de mercado, volatilidade implícita, prêmio de taxa de juros (corporate e longo prazo), sentimento do consumidor e índice de incerteza. No segundo ambiente foi usado à data base do FRED com 130 variáveis econômicas como variáveis explicativas. No terceiro ambiente foram usadas as variáveis mais relevantes do ambiente 1 e do ambiente 2. Observa-se no trabalho uma melhora em prever o IP contra um modelo AR e algumas interpretações a respeito do comportamento da economia americana nos últimos 45 anos (importância de setores econômicos, períodos de incerteza, mudanças na resposta a prêmio de risco, volatilidade e taxa de juros). / [en] This thesis presents 6 different forecasting techniques for the monthly variation of the American Industrial Production Index in 3 different environments, totaling 18 models. In the first environment, the lags of the monthly variation of the industrial production index and other 55 market and expectation variables such as sector returns, market risk premium, implied volatility, and interest rate risk premiums (corporate premium and long term premium), consumer sentiment and uncertainty index. In the second environment was used the FRED data base with 130 economic variables as explanatory variables. In the third environment, the most relevant variables of environment 1 and environment 2 were used. It was observed an improvement in predicting IP against an AR model and some interpretations regarding the behavior of the American economy in the last 45 years (importance of sectors, uncertainty periods, and changes in response to risk premium, volatility and interest rate).

Page generated in 0.7845 seconds