• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 13
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Efficient inference and learning in graphical models for multi-organ shape segmentation / Inférence efficace et apprentissage des modèles graphiques pour la segmentation des formes multi-organes

Boussaid, Haithem 08 January 2015 (has links)
Cette thèse explore l’utilisation des modèles de contours déformables pour la segmentation basée sur la forme des images médicales. Nous apportons des contributions sur deux fronts: dans le problème de l’apprentissage statistique, où le modèle est formé à partir d’un ensemble d’images annotées, et le problème de l’inférence, dont le but est de segmenter une image étant donnée un modèle. Nous démontrons le mérite de nos techniques sur une grande base d’images à rayons X, où nous obtenons des améliorations systématiques et des accélérations par rapport à la méthode de l’état de l’art. Concernant l’apprentissage, nous formulons la formation de la fonction de score des modèles de contours déformables en un problème de prédiction structurée à grande marge et construisons une fonction d’apprentissage qui vise à donner le plus haut score à la configuration vérité-terrain. Nous intégrons une fonction de perte adaptée à la prédiction structurée pour les modèles de contours déformables. En particulier, nous considérons l’apprentissage avec la mesure de performance consistant en la distance moyenne entre contours, comme une fonction de perte. L’utilisation de cette fonction de perte au cours de l’apprentissage revient à classer chaque contour candidat selon sa distance moyenne du contour vérité-terrain. Notre apprentissage des modèles de contours déformables en utilisant la prédiction structurée avec la fonction zéro-un de perte surpasse la méthode [Seghers et al. 2007] de référence sur la base d’images médicales considérée [Shiraishi et al. 2000, van Ginneken et al. 2006]. Nous démontrons que l’apprentissage avec la fonction de perte de distance moyenne entre contours améliore encore plus les résultats produits avec l’apprentissage utilisant la fonction zéro-un de perte et ce d’une quantité statistiquement significative.Concernant l’inférence, nous proposons des solveurs efficaces et adaptés aux problèmes combinatoires à variables spatiales discrétisées. Nos contributions sont triples: d’abord, nous considérons le problème d’inférence pour des modèles graphiques qui contiennent des boucles, ne faisant aucune hypothèse sur la topologie du graphe sous-jacent. Nous utilisons un algorithme de décomposition-coordination efficace pour résoudre le problème d’optimisation résultant: nous décomposons le graphe du modèle en un ensemble de sous-graphes en forme de chaines ouvertes. Nous employons la Méthode de direction alternée des multiplicateurs (ADMM) pour réparer les incohérences des solutions individuelles. Même si ADMM est une méthode d’inférence approximative, nous montrons empiriquement que notre implémentation fournit une solution exacte pour les exemples considérés. Deuxièmement, nous accélérons l’optimisation des modèles graphiques en forme de chaîne en utilisant l’algorithme de recherche hiérarchique A* [Felzenszwalb & Mcallester 2007] couplé avec les techniques d’élagage développés dans [Kokkinos 2011a]. Nous réalisons une accélération de 10 fois en moyenne par rapport à l’état de l’art qui est basé sur la programmation dynamique (DP) couplé avec les transformées de distances généralisées [Felzenszwalb & Huttenlocher 2004]. Troisièmement, nous intégrons A* dans le schéma d’ADMM pour garantir une optimisation efficace des sous-problèmes en forme de chaine. En outre, l’algorithme résultant est adapté pour résoudre les problèmes d’inférence augmentée par une fonction de perte qui se pose lors de l’apprentissage de prédiction des structure, et est donc utilisé lors de l’apprentissage et de l’inférence. [...] / This thesis explores the use of discriminatively trained deformable contour models (DCMs) for shape-based segmentation in medical images. We make contributions in two fronts: in the learning problem, where the model is trained from a set of annotated images, and in the inference problem, whose aim is to segment an image given a model. We demonstrate the merit of our techniques in a large X-Ray image segmentation benchmark, where we obtain systematic improvements in accuracy and speedups over the current state-of-the-art. For learning, we formulate training the DCM scoring function as large-margin structured prediction and construct a training objective that aims at giving the highest score to the ground-truth contour configuration. We incorporate a loss function adapted to DCM-based structured prediction. In particular, we consider training with the Mean Contour Distance (MCD) performance measure. Using this loss function during training amounts to scoring each candidate contour according to its Mean Contour Distance to the ground truth configuration. Training DCMs using structured prediction with the standard zero-one loss already outperforms the current state-of-the-art method [Seghers et al. 2007] on the considered medical benchmark [Shiraishi et al. 2000, van Ginneken et al. 2006]. We demonstrate that training with the MCD structured loss further improves over the generic zero-one loss results by a statistically significant amount. For inference, we propose efficient solvers adapted to combinatorial problems with discretized spatial variables. Our contributions are three-fold:first, we consider inference for loopy graphical models, making no assumption about the underlying graph topology. We use an efficient decomposition-coordination algorithm to solve the resulting optimization problem: we decompose the model’s graph into a set of open, chain-structured graphs. We employ the Alternating Direction Method of Multipliers (ADMM) to fix the potential inconsistencies of the individual solutions. Even-though ADMMis an approximate inference scheme, we show empirically that our implementation delivers the exact solution for the considered examples. Second,we accelerate optimization of chain-structured graphical models by using the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] couple dwith the pruning techniques developed in [Kokkinos 2011a]. We achieve a one order of magnitude speedup in average over the state-of-the-art technique based on Dynamic Programming (DP) coupled with Generalized DistanceTransforms (GDTs) [Felzenszwalb & Huttenlocher 2004]. Third, we incorporate the Hierarchical A∗ algorithm in the ADMM scheme to guarantee an efficient optimization of the underlying chain structured subproblems. The resulting algorithm is naturally adapted to solve the loss-augmented inference problem in structured prediction learning, and hence is used during training and inference. In Appendix A, we consider the case of 3D data and we develop an efficientmethod to find the mode of a 3D kernel density distribution. Our algorithm has guaranteed convergence to the global optimum, and scales logarithmically in the volume size by virtue of recursively subdividing the search space. We use this method to rapidly initialize 3D brain tumor segmentation where we demonstrate substantial acceleration with respect to a standard mean-shift implementation. In Appendix B, we describe in more details our extension of the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] to inference on chain-structured graphs.
12

Vers une méthode de restauration aveugle d’images hyperspectrales / Towards a blind restoration method of hyperspectral images

Zhang, Mo 06 December 2018 (has links)
Nous proposons dans cette thèse de développer une méthode de restauration aveugle d'images flouées et bruitées où aucune connaissance a priori n'est exigée. Ce manuscrit est composé de trois chapitres : le 1er chapitre est consacré aux travaux de l'état de l'art. Les approches d'optimisation pour la résolution du problème de restauration y sont d'abord discutées. Ensuite les principales méthodes de restauration, dites semi-aveugles car nécessitant un minimum de connaissance a priori sont analysées. Parmi ces méthodes, cinq sont retenues pour évaluation. Le 2ème chapitre est dédié à la comparaison des performances des méthodes retenues dans le chapitre précédent. Les principaux critères objectifs d'évaluation de la qualité des images restaurées sont présentés. Parmi ces critères, la norme L1 de l'erreur d'estimation est sélectionnée. L'étude comparative menée sur une banque d'images monochromes, dégradées artificiellement par deux fonctions floues de supports différents et trois niveaux de bruit a permis de mettre en évidence les deux méthodes les plus pertinentes. La première repose sur une approche alternée mono-échelle où la PSF et l'image sont estimées dans une seule étape. La seconde utilise une approche hybride multi-échelle qui consiste tout d'abord à estimer de manière alternée la PSF et une image latente, puis dans une étape suivante séquentielle, à restaurer l'image. Dans l'étude comparative conduite, l'avantage revient à cette dernière. Les performances de ces méthodes serviront de référence pour comparer ensuite la méthode développée. Le 3ème chapitre porte sur la méthode développée. Nous avons cherché à rendre aveugle l'approche hybride retenue dans le chapitre précédent tout en améliorant la qualité d'estimation de la PSF et de l'image restaurée. Les contributions ont porté sur plusieurs points. Une première série d'améliorations concerne la redéfinition des échelles, celle de l'initialisation de l'image latente à chaque niveau d'échelle, l'évolution des paramètres pour la sélection des contours pertinents servant de support à l'estimation de la PSF et enfin, la définition d'un critère d'arrêt aveugle. Une seconde série de contributions a porté sur l'estimation aveugle des deux paramètres de régularisation impliqués pour éviter d'avoir à les fixer empiriquement. Chaque paramètre est associé à une fonction coût distincte l'une pour l'estimation de la PSF et la seconde pour l'estimation d'une image latente. Dans l'étape séquentielle qui suit, nous avons cherché à affiner le support de la PSF estimée dans l'étape alternée, avant de l'exploiter dans le processus de restauration de l'image. A ce niveau, la seule connaissance a priori nécessaire est une borne supérieure du support de la PSF. Les différentes évaluations conduites sur des images monochromes et hyperspectrales dégradées artificiellement par plusieurs flous de type mouvement, de supports différents, montrent une nette amélioration de la qualité de restauration obtenue par l'approche développée par rapport aux deux meilleures approches de l'état de l'art retenues. / We propose in this thesis manuscript to develop a blind restoration method of single component blurred and noisy images where no prior knowledge is required. This manuscript is composed of three chapters: the first chapter focuses on state-of-art works. The optimization approaches for resolving the restoration problem are discussed first. Then, the main methods of restoration, so-called semi-blind ones because requiring a minimum of a priori knowledge are analysed. Five of these methods are selected for evaluation. The second chapter is devoted to comparing the performance of the methods selected in the previous chapter. The main objective criteria for evaluating the quality of the restored images are presented. Of these criteria, the l1 norm for the estimation error is selected. The comparative study conducted on a database of monochromatic images, artificially degraded by two blurred functions with different support size and three levels of noise, revealed the most two relevant methods. The first one is based on a single-scale alternating approach where both the PSF and the image are estimated alternatively. The second one uses a multi-scale hybrid approach, which consists first of alternatingly estimating the PSF and a latent image, then in a sequential next step, restoring the image. In the comparative study performed, the benefit goes to the latter. The performance of both these methods will be used as references to then compare the newly designed method. The third chapter deals with the developed method. We have sought to make the hybrid approach retained in the previous chapter as blind as possible while improving the quality of estimation of both the PSF and the restored image. The contributions covers a number of points. A first series concerns the redefinition of the scales that of the initialization of the latent image at each scale level, the evolution of the parameters for the selection of the relevant contours supporting the estimation of the PSF and finally the definition of a blind stop criterion. A second series of contributions concentrates on the blind estimation of the two regularization parameters involved in order to avoid having to fix them empirically. Each parameter is associated with a separate cost function either for the PSF estimation or for the estimation of a latent image. In the sequential step that follows, we refine the estimation of the support of the PSF estimated in the previous alternated step, before exploiting it in the process of restoring the image. At this level, the only a priori knowledge necessary is a higher bound of the support of the PSF. The different evaluations performed on monochromatic and hyperspectral images artificially degraded by several motion-type blurs with different support sizes, show a clear improvement in the quality of restoration obtained by the newly designed method in comparison to the best two state-of-the-art methods retained.
13

Reconstruction of enhanced ultrasound images from compressed measurements / Reconstruction d'images ultrasonores déconvoluées à partir de données compressées

Chen, Zhouye 21 October 2016 (has links)
L'intérêt de l'échantillonnage compressé dans l'imagerie ultrasonore a été récemment évalué largement par plusieurs équipes de recherche. Suite aux différentes configurations d'application, il a été démontré que les données RF peuvent être reconstituées à partir d'un faible nombre de mesures et / ou en utilisant un nombre réduit d'émission d'impulsions ultrasonores. Selon le modèle de l'échantillonnage compressé, la résolution des images ultrasonores reconstruites à partir des mesures compressées dépend principalement de trois aspects: la configuration d'acquisition, c.à.d. l'incohérence de la matrice d'échantillonnage, la régularisation de l'image, c.à.d. l'a priori de parcimonie et la technique d'optimisation. Nous nous sommes concentrés principalement sur les deux derniers aspects dans cette thèse. Néanmoins, la résolution spatiale d'image RF, le contraste et le rapport signal sur bruit dépendent de la bande passante limitée du transducteur d'imagerie et du phénomène physique lié à la propagation des ondes ultrasonores. Pour surmonter ces limitations, plusieurs techniques de traitement d'image en fonction de déconvolution ont été proposées pour améliorer les images ultrasonores. Dans cette thèse, nous proposons d'abord un nouveau cadre de travail pour l'imagerie ultrasonore, nommé déconvolution compressée, pour combiner l'échantillonnage compressé et la déconvolution. Exploitant une formulation unifiée du modèle d'acquisition directe, combinant des projections aléatoires et une convolution 2D avec une réponse impulsionnelle spatialement invariante, l'avantage de ce cadre de travail est la réduction du volume de données et l'amélioration de la qualité de l'image. Une méthode d'optimisation basée sur l'algorithme des directions alternées est ensuite proposée pour inverser le modèle linéaire, en incluant deux termes de régularisation exprimant la parcimonie des images RF dans une base donnée et l'hypothèse statistique gaussienne généralisée sur les fonctions de réflectivité des tissus. Nous améliorons les résultats ensuite par la méthode basée sur l'algorithme des directions simultanées. Les deux algorithmes sont évalués sur des données simulées et des données in vivo. Avec les techniques de régularisation, une nouvelle approche basée sur la minimisation alternée est finalement développée pour estimer conjointement les fonctions de réflectivité des tissus et la réponse impulsionnelle. Une investigation préliminaire est effectuée sur des données simulées. / The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. According to the model of compressive sampling, the resolution of reconstructed ultrasound images from compressed measurements mainly depends on three aspects: the acquisition setup, i.e. the incoherence of the sampling matrix, the image regularization, i.e. the sparsity prior, and the optimization technique. We mainly focused on the last two aspects in this thesis. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to Ultrasound wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this thesis, we first propose a novel framework for Ultrasound imaging, named compressive deconvolution, to combine the compressive sampling and deconvolution. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of this framework is the joint data volume reduction and image quality improvement. An optimization method based on the Alternating Direction Method of Multipliers is then proposed to invert the linear model, including two regularization terms expressing the sparsity of the RF images in a given basis and the generalized Gaussian statistical assumption on tissue reflectivity functions. It is improved afterwards by the method based on the Simultaneous Direction Method of Multipliers. Both algorithms are evaluated on simulated and in vivo data. With regularization techniques, a novel approach based on Alternating Minimization is finally developed to jointly estimate the tissue reflectivity function and the point spread function. A preliminary investigation is made on simulated data.
14

New Algorithms for Local and Global Fiber Tractography in Diffusion-Weighted Magnetic Resonance Imaging

Schomburg, Helen 29 September 2017 (has links)
No description available.
15

Contributions au démélange non-supervisé et non-linéaire de données hyperspectrales / Contributions to unsupervised and nonlinear unmixing of hyperspectral data

Ammanouil, Rita 13 October 2016 (has links)
Le démélange spectral est l’un des problèmes centraux pour l’exploitation des images hyperspectrales. En raison de la faible résolution spatiale des imageurs hyperspectraux en télédetection, la surface représentée par un pixel peut contenir plusieurs matériaux. Dans ce contexte, le démélange consiste à estimer les spectres purs (les end members) ainsi que leurs fractions (les abondances) pour chaque pixel de l’image. Le but de cette thèse estde proposer de nouveaux algorithmes de démélange qui visent à améliorer l’estimation des spectres purs et des abondances. En particulier, les algorithmes de démélange proposés s’inscrivent dans le cadre du démélange non-supervisé et non-linéaire. Dans un premier temps, on propose un algorithme de démelange non-supervisé dans lequel une régularisation favorisant la parcimonie des groupes est utilisée pour identifier les spectres purs parmi les observations. Une extension de ce premier algorithme permet de prendre en compte la présence du bruit parmi les observations choisies comme étant les plus pures. Dans un second temps, les connaissances a priori des ressemblances entre les spectres à l’échelle localeet non-locale ainsi que leurs positions dans l’image sont exploitées pour construire un graphe adapté à l’image. Ce graphe est ensuite incorporé dans le problème de démélange non supervisé par le biais d’une régularisation basée sur le Laplacian du graphe. Enfin, deux algorithmes de démélange non-linéaires sont proposés dans le cas supervisé. Les modèles de mélanges non-linéaires correspondants incorporent des fonctions à valeurs vectorielles appartenant à un espace de Hilbert à noyaux reproduisants. L’intérêt de ces fonctions par rapport aux fonctions à valeurs scalaires est qu’elles permettent d’incorporer un a priori sur la ressemblance entre les différentes fonctions. En particulier, un a priori spectral, dans un premier temps, et un a priori spatial, dans un second temps, sont incorporés pour améliorer la caractérisation du mélange non-linéaire. La validation expérimentale des modèles et des algorithmes proposés sur des données synthétiques et réelles montre une amélioration des performances par rapport aux méthodes de l’état de l’art. Cette amélioration se traduit par une meilleure erreur de reconstruction des données / Spectral unmixing has been an active field of research since the earliest days of hyperspectralremote sensing. It is concerned with the case where various materials are found inthe spatial extent of a pixel, resulting in a spectrum that is a mixture of the signatures ofthose materials. Unmixing then reduces to estimating the pure spectral signatures and theircorresponding proportions in every pixel. In the hyperspectral unmixing jargon, the puresignatures are known as the endmembers and their proportions as the abundances. Thisthesis focuses on spectral unmixing of remotely sensed hyperspectral data. In particular,it is aimed at improving the accuracy of the extraction of compositional information fromhyperspectral data. This is done through the development of new unmixing techniques intwo main contexts, namely in the unsupervised and nonlinear case. In particular, we proposea new technique for blind unmixing, we incorporate spatial information in (linear and nonlinear)unmixing, and we finally propose a new nonlinear mixing model. More precisely, first,an unsupervised unmixing approach based on collaborative sparse regularization is proposedwhere the library of endmembers candidates is built from the observations themselves. Thisapproach is then extended in order to take into account the presence of noise among theendmembers candidates. Second, within the unsupervised unmixing framework, two graphbasedregularizations are used in order to incorporate prior local and nonlocal contextualinformation. Next, within a supervised nonlinear unmixing framework, a new nonlinearmixing model based on vector-valued functions in reproducing kernel Hilbert space (RKHS)is proposed. The aforementioned model allows to consider different nonlinear functions atdifferent bands, regularize the discrepancies between these functions, and account for neighboringnonlinear contributions. Finally, the vector-valued kernel framework is used in orderto promote spatial smoothness of the nonlinear part in a kernel-based nonlinear mixingmodel. Simulations on synthetic and real data show the effectiveness of all the proposedtechniques

Page generated in 0.1515 seconds