• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 339
  • 63
  • 26
  • 12
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 483
  • 483
  • 205
  • 77
  • 75
  • 67
  • 58
  • 52
  • 50
  • 48
  • 48
  • 47
  • 44
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Reliability of PV Modules: Dependence on Manufacturing Quality and Field Climatic Conditions

January 2017 (has links)
abstract: This is a two-part thesis assessing the long-term reliability of photovoltaic modules. Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates, this work adapts the Failure Mode Effect and Criticality Analysis (FMECA, IEC 60812) to quantify the impact of failure modes observed at the time of manufacturing. The method was developed through analysis of nearly 9000 modules at the pre-shipment evaluation stage in module manufacturing facilities across south east Asia. Numerous projects were analyzed to generate RPN (Risk Priority Number) scores for projects. In this manner, it was possibly to quantitatively assess the risk being carried the project at the time of shipment of modules. The objective of this work was to develop a benchmarking system that would allow for accurate quantitative estimations of risk mitigation and project bankability. Part 2: Climate dependent reliability - Activation energy determination for climate specific degradation modes This work attempts to model the parameter (Isc or Rs) degradation rate of modules as a function of the climatic parameters (i.e. temperature, relative humidity and ultraviolet radiation) at the site. The objective of this work was to look beyond the power degradation rate and model based on the performance parameter directly affected by the degradation mode under investigation (encapsulant browning or IMS degradation of solder bonds). Different physical models were tested and validated through comparing the activation energy obtained for each degradation mode. It was concluded that, for the degradation of the solder bonds within the module, the Pecks equation (function of temperature and relative humidity) modelled with Rs increase was the best fit; the activation energy ranging from 0.4 – 0.7 eV based on the climate type. For encapsulant browning, the Modified Arrhenius equation (function of temperature and UV) seemed to be the best fit presently, yielding an activation energy of 0.3 eV. The work was concluded by suggesting possible modifications to the models based on degradation pathways unaccounted for in the present work. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2017
222

Optimum Co-product Utilization from Hydrothermal Liquefaction of Microalgae

January 2017 (has links)
abstract: The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae liquefaction at a temperature of 300 °C for 30 minute, converted 31.22 % of the Galdieria sulphuraria and 41.00 % of the Kirchneriella cornutum into biocrude. Upon changing the reactor from a 100 ml to a 250 ml reactor, the yield in biocrude increased to 31.48 % for G. sulphuraria and dropped to 38.05 % for K. cornutum. Further, energy recoveries based on calorific values of HTL products were seen to drop by about 5 % of the 100 ml calculated values in the larger reactor. Biochar from HTL of G. sulphuraria at 300 °C showed 15.98 and 5.27 % of phosphorous and nitrogen, respectively. HTL products from the biomass were analyzed for major elements through ICP-OES and CHNS/O. N and P are macronutrients that can be utilized in growing microalgae. This could reduce the operational demands in growing algae like, phosphorous mined to meet annual national demand for aviation fuel. Acidic leaching of these elements as phosphates and ammoniacal nitrogen was studied. Improved leaching of 49.49 % phosphorous and 95.71 % nitrogen was observed at 40 °C and pH 2.5 over a period of 7 days into the growth media. These conditions being ideal for growth of G. sulphuraria, leaching can be done in-situ to reduce overhead cost. Growth potential of G. sulphuraria in leached media was compared to a standard cyanidium media produced from inorganic chemicals. Initial inhibition studies were done in the leached media at 40 °C and 2-3 vol. % CO2 to observe a positive growth rate of 0.273 g L-1 day-1. Further, growth was compared to standard media with similar composition in a 96 well plate 50 μL microplate assay for 5 days. The growth rates in both media were comparable. Additionally, growth was confirmed in a 240 times larger tubular reactor in a Tissue Culture Roller drum apparatus. A better growth was observed in the leached cyanidium media as compared to the standard variant. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2017
223

Standardized Sample Extraction Procedure for TCLP Testing of PV Modules

January 2017 (has links)
abstract: Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in the United States, there are no regulations for governing the recycling of solar panels and the recycling process varies by the manufacturer. To bring in PV specific recycling regulations, whether the PV panels are toxic to the landfills, is to be determined. Per existing EPA regulations, PV panels are categorized as general waste and are subjected to a toxicity characterization leaching procedure (TCLP) to determine if it contains any toxic metals that can possibly leach into the landfill. In this thesis, a standardized procedure is developed for extracting samples from an end of life PV module. A literature review of the existing regulations in Europe and other countries is done. The sample extraction procedure is tested on a crystalline Si module to validate the method. The extracted samples are sent to an independent TCLP testing lab and the results are obtained. Image processing technique developed at ASU PRL is used to detect the particle size in a broken module and the size of samples sent is confirmed to follow the regulation. / Dissertation/Thesis / Masters Thesis Engineering 2017
224

Correlative X-ray Microscopy Studies of CuIn1−xGaxSe2 Solar Cells

January 2018 (has links)
abstract: It is well known that the overall performance of a solar cell is limited by the worst performing areas of the device. These areas are usually micro and nano-scale defects inhomogenously distributed throughout the material. Mitigating and/or engineering these effects is necessary to provide a path towards increasing the efficiency of state-of-the-art solar cells. The first big challenge is to identify the nature, origin and impact of such defects across length scales that span multiple orders of magnitude, and dimensions (time, temperature etc.). In this work, I present a framework based on correlative X-ray microscopy and big data analytics to identify micro and nanoscale defects and their impact on material properties in CuIn1-xGaxSe2 (CIGS) solar cells. Synchrotron based X-ray Fluorescence (XRF) and X-ray Beam Induced Current (XBIC) are used to study the effect that compositional variations, between grains and at grain boundaries, have on CIGS device properties. An experimental approach is presented to correcting XRF and XBIC quantification of CIGS thin film solar cells. When applying XRF and XBIC to study low and high gallium CIGS devices, it was determined that increased copper and gallium at grain boundaries leads to increased collection efficiency at grain boundaries in low gallium absorbers. However, composition variations were not correlated with changes in collection efficiency in high gallium absorbers, despite the decreased collection efficiency observed at grain boundaries. Understanding the nature and impact of these defects is only half the battle; controlling or mitigating their impact is the next challenge. This requires a thorough understanding of the origin of these defects and their kinetics. For such a study, a temperature and atmosphere controlled in situ stage was developed. The stage was utilized to study CIGS films during a rapid thermal growth process. Comparing composition variations across different acquisition times and growth temperatures required the implementation of machine learning techniques, including clustering and classification algorithms. From the analysis, copper was determined to segregate the faster than indium and gallium, and clustering techniques showed consistent elemental segregation into copper rich and copper poor regions. Ways to improve the current framework and new applications are also discussed. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
225

Simulação e análise de topologias híbridas de fontes alternativas de energia

Lambiase, Clodoaldo de Borba January 2016 (has links)
A constituição de sistemas híbridos como alternativa ao fornecimento de energia da concessionária, gerando energia própria e operando de forma isolada ou interconectada ao sistema de distribuição, tem originado estudos e implementações em nível industrial, comercial e mais recentemente residencial. A principal discussão que surge são as análises das vantagens técnicas e econômicas pela opção desse tipo de instalação. Neste trabalho, é apresentado um estudo complementar às pesquisas realizadas, onde é projetado um sistema híbrido contendo aerogeradores, painéis fotovoltaicos, processo de eletrólise, célula a combustível, microturbina a gás e geradores diesel. Esse sistema é simulado e comparado técnica e economicamente a um sistema que contém apenas geradores diesel. O sistema híbrido proposto possui uma microrrede conectada a um típico sistema de distribuição mas com um limite de demanda contratada que impede a satisfação de todas as necessidades energéticas da instalação apenas com a energia da concessionária. Procura-se avaliar os impactos técnicos e econômicos do atendimento da demanda por eletricidade através deste sistema híbrido além de executar-se a otimização, via PSO, do dimensionamento deste sistema, que utiliza uma ordem de despacho para gerenciar as mini unidades geradoras de energia. Foi utilizado o software TRNSYS devido a sua característica de permitir estimar a potência e energia produzidas no intervalo de um ano com detalhamento horário de cada recurso, considerando estimativas reais e localizadas para a disponibilidade dos recursos eólicos e fotovoltaicos. / The designing of hybrid systems as an alternative to power supply from power utility, generating their own energy in operating islanded or grid-tie to the power utility, has resulted in studies and implementations in industrial, commercial and residential level recently. The main discussion that arises is the analysis of the technical and economical advantages for this type of solution. This work presents a complementary study to the researches conducted nowadays, which is designed a hybrid system containing wind turbines, photovoltaic panels, electrolysis process, fuel cell, gas micro turbine and diesel generators. This system was simulated and was compared technically and economically to a system with only diesel gensets. The proposed hybrid system has a microrrede connected to a typical distribution system with a limited power demand value that prevents the satisfaction of all energy needs of the installation only with the utility power. This study evaluates the technical and economical impacts to meeting electric power consumption through this hybrid system and optimize using PSO, the design of this system that uses a dispatch order to manage the mini power generation units. The TRNSYS software was used due to its feature of allowing estimate the electric power and electric energy produced in one year apart with hourly details of each feature, considering actual estimates and localized availability of wind and photovoltaic resources.
226

Thermal Performance of PNIPAm as an Evaporative Cooling Medium within a Ventilated Wall Cavity

January 2018 (has links)
abstract: Learning from the anatomy of leaves, a new approach to bio-inspired passive evaporative cooling is presented that utilizes the temperature-responsive properties of PNIPAm hydrogels. Specifically, an experimental evaporation rate from the polymer, PNIPAm, is determined within an environmental chamber, which is programmed to simulate temperature and humidity conditions common in Phoenix, Arizona in the summer. This evaporation rate is then used to determine the theoretical heat transfer through a layer of PNIPAm that is attached to an exterior wall of a building within a ventilated cavity in Phoenix. The evaporation of water to the air gap from the polymer layer absorbs heat that could otherwise be conducted to the interior space of the building and then dispels it as a vapor away from the building. The results indicate that the addition of the PNIPAm layer removes all heat radiated from the exterior cladding, indicating that it could significantly reduce the demand for air conditioning at the interior side of the wall to which it is attached. / Dissertation/Thesis / Masters Thesis Built Environment 2018
227

Potential Induced Degradation (PID) of Pre-Stressed Photovoltaic Modules: Effect of Glass Surface Conductivity Disruption

January 2012 (has links)
abstract: Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties. / Dissertation/Thesis / M.S.Tech Engineering 2012
228

Distributed Photovoltaic Generation in Residential Distribution Systems: Impacts on Power Quality and Anti-islanding

January 2013 (has links)
abstract: The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated. / Dissertation/Thesis / M.S. Electrical Engineering 2013
229

Modeling and Control for Microgrids

January 2013 (has links)
abstract: Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
230

Failure and Degradation Modes of PV modules in a Hot Dry Climate: Results after 16 years of field exposure

January 2013 (has links)
abstract: This study evaluates two 16 year old photovoltaic power (PV) plants to ascertain degradation rates and various failure modes which occur in a "hot-dry" climate. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The two power plants referred to as Site 4A and -4B with (1512 modules each) were initially installed on a single axis tracking system in Gilbert, Arizona for the first seven years and have been operating at their current location in Mesa, Arizona for the last nine years at fixed horizontal tilt Both sites experience hot-dry desert climate. Average degradation rate is 0.85%/year for the best modules and 1.1%/year for all the modules (excluding the safety failed modules). Primary safety failure mode is the backsheet delamination though it is small (less than 1.7%). Primary degradation mode and reliability failure mode may potentially be attributed to encapsulant browning leading to transmittance/current loss and thermo-mechanical solder bond fatigue (cell-ribbon and ribbon-ribbon) leading to series resistance increase. Average soiling loss of horizontal tilt based modules is 11.1%. About 0.5-1.7% of the modules qualify for the safety returns under the typical 20/20 warranty terms, 73-76% of the modules qualify for the warranty claims under the typical 20/20 power warranty terms and 24-26% of the modules are meeting the typical 20/20 power warranty terms. / Dissertation/Thesis / M.S.Tech Engineering 2013

Page generated in 0.3928 seconds