Spelling suggestions: "subject:"altimetry"" "subject:"actimetry""
51 |
Étude et mise en oeuvre d'estimateurs pour l'altimétrie par réflectométrie GNSS / Study and implementation of estimators for altimetry measurements by GNSS-reflectometryKucwaj, Jean-Christophe 05 December 2016 (has links)
La réflectométrie GNSS (GNSS-R) est une technique d'observation de la Terre reposant sur un système radar bi-statique passif qui utilise, comme signaux d'opportunité, les signaux GNSS en bande L. Les travaux présentés dans ce manuscrit de thèse ont pour but de développer des méthodes de traitement du signal dédiées à l'altimétrie au sol par GNSS-R. L'altitude entre le récepteur GNSS-R et la surface de réflexion est déduite de la différence de chemin entre les signaux direct et réfléchi. On propose trois méthodes d'estimation dédiées à l'altimétrie par GNSS-R, pour un récepteur mono-fréquence, utilisant respectivement les observables de code, de puissance (carrier-to-noise ratio C/N₀) et de phase des signaux GNSS observés. Nous proposons un estimateur de la pseudo-distance qui utilise la mesure de délais de code sous-échantilloné aidée par la mesure de phase. On montre que l'estimateur sub-résolution proposé permet d'obtenir une précision qui est inférieure à la résolution en délai de code. Le deuxième estimateur s'appuie sur une méthode de calibration qui normalise la puissance de la somme des signaux direct et réfléchi (Interférence Pattern Technique). On montre par l'étude des bornes de Cramèr-Rao que l'estimateur proposé permet de réduire le temps de mesure et de conserver une précision centimétrique. La mesure de phase est une grandeur circulaire qui évolue linéairement avec l'élévation du satellite. Dans ce contexte, nous proposons deux estimateurs qui s'appuient sur un modèle de régression circulaire et la distribution circulaire de von Mises. Des expérimentations sur données réelles viennent conclure ce manuscrit de thèse et montrent la faisabilité des trois méthodes d'estimation proposées. La précision centimétrique est atteinte. / The Global Navigation Satellite Systems Reflectometry (GNSS-R) is an Earth observation technique. It is based on a passive bi-static radar system using the L-band signal coming directly from a GNSS satellite and this same signal reflected by the Earth surface. The aim of the presented work is to develop signal processing methods for altimetry measurements using ground based GNSS-R. The altitude is derived from the difference of path between the direct and reflected signals. We propose three estimators for GNSS-R altimetry measurement using respectively the code observations, the carrier-to-noise ratio C/N₀ observations, and the phase observations obtained by a mono-frequency receiver. Firstly, we define a pseudo-range estimator using under-sampling code delay observations aided by phase measurements. We show that the proposed estimator allows avoiding accuracy limitations due to the receiver resolution. Secondly, a calibration method has been developed for the Interference Pattern Technique, for normalizing the C/N₀ of the combination of the direct and reflected signals. The Cramèr-Rao Lower Bound of this estimation technique is studied. We show that the proposed estimator allows reducing the observation duration while keeping the centimeter accuracy. Thirdly, a last method is proposed in order to evaluate the difference of path between the direct and reflected signals using phase measurement.The phase measurement is an angular data evolving linearly with the satellite elevation. In this context, we propose two estimators based on a circular-linear regression and the von Mises distribution. Experimentation on real data conclude this manuscript and show the feasibility of these methods. The centimeter accuracy is reached.
|
52 |
Höhenänderungen des Antarktischen Eisschildes: Analyse, Validierung und Kombination von Messungen aus 40 Jahren SatellitenaltimetrieSchröder, Ludwig 30 January 2020 (has links)
Die Veränderungen des Antarktischen Eisschildes (AIS) haben einen entscheidenden Einfluss auf den Meeresspiegel. Für Prädiktionen zukünftiger Szenarien des globalen Klimawandels ist das Verständnis der zugrundeliegenden Prozesse und damit die Beobachtung gegenwärtiger Veränderungen unabdingbar. Mit Hilfe von Satellitenaltimetrie lässt sich die Massenbilanz des AIS großflächig, hochaufgelöst und kontinuierlich ermitteln. Da viele Prozesse jedoch auf sehr langen Zeitskalen ablaufen, ist es das Ziel dieser Arbeit, durch Validierung, Kalibrierung und Kombination der Messungen verschiedener Altimetermissionen die Zeitreihen der Beobachtungen maximal zu verlängern. Nur so lassen sich interannuale Variationen vom Langzeittrend trennen, was entscheidend für das Verständnis der Prozesse der Oberflächenmassenbilanz und der Eisdynamik ist.
Die Ausgangsdaten dieser Arbeit bilden altimetrische Höhenmessungen des AIS. Zur Analyse ihres Genauigkeitspotenzials und um Kalibrierfehler aufzudecken, werden diese Messungen mit unabhängigen In-situ-Daten validiert. In dieser Arbeit wurde hierfür ein umfangreicher Datensatz von kinematischen GNSS-Profilen verwendet, welche zwischen 2001 und 2015 beobachtet wurden und mit Profillängen von bis zu 1700 km das gesamte topografische Spektrum des Eisschildes abdecken. Neben der anspruchsvollen differenziellen Auswertung der GNSS-Profile mit Basislinienlängen von über 1000 km erfordert auch die Reduktion der Höhe der Antenne auf die Schneeoberfläche aufgrund des Einsinkens der Zugmaschinen in die oberen Firnschichten besondere Berücksichtigung.
Anhand dieser Daten wurden Radaraltimetermessungen in unterschiedlichen Prozessierungsvarianten verglichen, um den Einfluss der Wahl der Auswerteansätze zu quantifizieren. Die Genauigkeit der Radaraltimetrie von Eisschilden wird dominiert durch das Retracking zur Ableitung der exakten Signallaufzeit und durch die Methode der Korrektion topografischer Einflüsse. Die Validierung zeigt, dass durch einen schwellwertbasierten Retracker und die Relokation der Messung zum satellitennächsten Punkt die höchste Genauigkeit erreicht wird. Optimierte Varianten dieser Ansätze wurden zur konsistenten Reprozessierung aller Radarmessungen verwendet, wodurch nicht nur ein einheitlicher Datensatz geschaffen, sondern auch die Genauigkeit der meisten Messungen um etwa 50% verbessert wurde. Auch die Laseraltimetermessungen von ICESat wurden anhand der GNSS-Profile kalibriert. Hier wurden Laserkampagnenbias bestimmt und korrigiert, welche andernfalls abgeleitete Höhenänderungsraten um etwa 1,2±0,3 cm/a verfälscht hätten.
Zur gemeinsamen Auswertung der Altimetermissionen Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat und CryoSat-2 wurde der Ansatz der Wiederholspuranalyse verwendet und noch erweitert, um spezifische Charakteristika unterschiedlicher Missionen entsprechend berücksichtigen zu können. Die hieraus abgeleiteten Zeitreihen beinhalten noch die Kalibrierbias der jeweiligen Messungen, welche im Anschluss unter Beachtung von Aspekten technikspezifischer Abtastung des Geländes und zeitlicher Distanz verschiedener Missionen schrittweise bestimmt und korrigiert werden. Das Ergebnis dieser kombinierten Auswertung bilden monatlich aufgelöste Zeitreihen von Höhendifferenzen gegenüber einer Referenzepoche auf einem Gitter von 10x10 km. Die Validierung mit kinematischen GNSS-Profilen, wie auch mit flugzeuggestützten Lasermessungen, bestätigt die beobachteten Höhenänderungen der kombinierten Zeitreihen und zeigt, dass auch die abgeleiteten Fehlermaße realistische Abschätzungen der Unsicherheit darstellen.
Nach Korrektion der Höhenänderungen um Ausgleichsbewegungen der festen Erde und der Umrechnung in eine Massenänderung lässt sich aus diesen Beobachtungen die Massenbilanz verschiedener Regionen des Antarktischen Eisschildes ableiten. Aus den Ergebnissen geht hervor, dass der beobachtete Teil des AIS nördlich von 81,5° südlicher Breite im Schnitt 85±16 Gt/a zwischen 1992 und 2017 an Masse verloren hat. Die Zeitreihen zeigen, dass diese Rate sich vor etwa 10 Jahren nochmals deutlich beschleunigte, so dass der Massenverlust zwischen 2010 und 2017 137±25 Gt/a betrug. Die Unterteilung in verschiedene Teilregionen des Eisschildes zeigt, dass diese Verluste nahezu vollständig der Westantarktis und der Antarktischen Halbinsel zuzuschreiben sind, während sich in der Ostantarktis Regionen mit Massenverlusten und mit Massenzuwächsen gegenseitig ausgleichen. Aus der Analyse der altimetrischen Beobachtungen der küstennahen Regionen der Ostantarktis, welche bis 1978 zurückreichen, geht hervor, dass der Trend über 25 Jahre sich auch vor 1992 in ähnlicher Weise fortsetzen lässt, so dass hier tatsächlich von einem Langzeittrend gesprochen werden kann. Allerdings wird dieser Trend oftmals durch interannuale Variationen überlagert, was sich aus den monatlichen Zeitreihen gut ablesen lässt und entscheidend für die Interpretation ist. Ein Vergleich mit Massenzeitreihen aus gravimetrischen Beobachtungen und Modellierungen der Oberflächenmassenbilanz zeigt eine hohe Konsistenz der Ergebnisse unterschiedlicher Beobachtungsverfahren, birgt jedoch auch Hinweise, wo Annahmen über die zugrunde liegenden Prozesse zu hinterfragen sind. Somit liefert dieser Vergleich einen wichtigen Beitrag zum Verständnis der Prozesse der Eismassenbilanz des AIS.
Die Grundlage der vorliegenden kumulativen Dissertation bilden zwei wissenschaftliche Publikationen. Die erste Publikation befasst sich mit der Validierung und Kalibrierung unterschiedlicher Altimeterprodukte mit In-situ-Messungen und beinhaltet in diesem Zusammenhang auch Details zur Auswertung der kinematischen GNSS-Profile, welche die Grundlage dieser Untersuchungen bilden. Die zweite Publikation baut auf den Ergebnissen der vorherigen Studie auf, beschreibt die Reprozessierung und die Kombination der Daten verschiedener Altimetermissionen und analysiert die Ergebnisse dieser Multimissionszeitreihen Antarktischer Eishöhenänderungen. Insgesamt soll diese Arbeit einen Beitrag zum verbesserten Verständnis der Veränderungen des AIS im Zuge des globalen Klimawandels liefern. Darüber hinaus zeigt sie auch weiteres Potenzial für zukünftige Arbeiten auf.:Zusammenfassung
Abstract
1. Einführung
1.1. Die polaren Eisschilde
1.2. Satellitengestützte Beobachtungsverfahren
2. Satellitenaltimetrie
2.1. Messprinzip
2.2. Komponenten der Oberflächenhöhenbestimmung
2.2.1. Orbitbestimmung
2.2.2. Distanzmessung
2.3. Missionen
2.4. Satellitenaltimetrie über Eisschilden
2.4.1. Analyse des Rückkehrsignals
2.4.2. Topografiekorrektion
2.4.3. Interferometrischer SAR-Modus
2.4.4. Bias bei Eisaltimetrie
3. Bestimmung von zeitlichen Variationen der Eisoberflächenhöhe
3.1. Methoden zur Bestimmung von Höhenänderungen
3.2. Kombination unterschiedlicher Missionen
4. Validierung
4.1. Messunsicherheiten und Arten der Validierung
4.2. Absolute Validierung mit kinematischen GNSS-Profilen
4.3. Validierung der Bestimmung von Höhenänderungen
5. Geophysikalische Interpretation
5.1. Von Höhenänderungen zur Eismassenbilanz
5.2. Vergleich unterschiedlicher Beobachtungsverfahren
6. Publikationen
PI. Validierung von Satellitenaltimetrie mittels kinematischem GNSS
PII. Multimissions-Satellitenaltimetrie über vier Jahrzehnte
7. Zusammenfassung und Ausblick
Literaturverzeichnis / Changes of the Antarctic Ice Sheet (AIS) have a significant impact on sea level. To predict future scenarios of global climate change, it is essential to understand the contributing processes and, therefor, to observe current changes. Large scale, high resolution and continuous mass balances of the AIS can be obtained with the help of satellite altimetry. As many processes here act over very long temporal scales, the goal of this work is to validate, calibrate and combine the measurements of different altimetry missions in order to obtain time series which are as long as possible. Only such long-term observations allow to separate interannual variations from the long-term trend, which is crucial to understand the processes of surface mass balance and ice dynamics.
Altimetric observations of elevation of the AIS are the basic data used in this work. In order to analyze their accuracy and precision, these measurements are validated using independent in situ observations. Here, an extensive set of kinematic GNSS-profiles was utilized for this purpose. These profiles were observed between 2001 and 2015 and, with lengths of up to 1700 km, they cover the whole spectrum of ice sheet topography. To obtain high precision surface elevation profiles, not only the demanding differential GNSS-processing with baseline lengths of more than 1000 km needs to be treated very carefully, also the reduction of the antenna height measurement to the snow surface requires special attention as the heavy vehicles sink into the upper firn layers in some regions.
With the help of this data set, radar altimetry measurements in different processing versions are compared in order to quantify the influence of the choice of methods to derive the surface elevation. The uncertainty of a radar altimetry measurement of an ice sheet is dominated by the method of retracking, which is used to defined the exact signal travel time, and the methodology to correct for topographic effects. The validation shows that a threshold based retracker and the method of relocating the measurement to the point of closest approach provides the highest accuracy and precision. All radar altimetry measurements have been consistently reprocessed using optimized versions of these approaches. This provided a uniform data basis for their combination and, at the same time, improved the accuracy of these measurements by about 50%. Also the laser measurements of ICESat were calibrated using these profiles. This helped to correct for the laser campaign biases, which, otherwise, would distort any inferred surface elevation rate by 1.2±0.3 cm/yr.
The joint processing of the missions Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat and CryoSat-2 was performed using the repeat altimetry method. Here, several extensions of this approach were developed to cope with the characteristics of the different missions. The derived time series still contained calibration biases, which were determined and corrected for in the following stepwise approach, taking into consideration aspects as the topography sampling of different techniques and the temporal sequence of the missions. The result of this combination are monthly time series of elevation changes with respect to a reference epoch, gridded on a 10x10 km raster. The validation with kinematic GNSS-profiles, as well as with airborne laser measurements, confirms the elevation changes from the multi-mission time series and proves that also the uncertainty estimates of these results are realistic.
The mass balance of different regions of the Antarctic Ice Sheet was obtained by correcting the surface elevation changes for changes of the underlying solid earth and transforming the results into mass. The obtained data shows that the observed part of the AIS north of 81.5° southern latitude lost an average amount of mass of 85±16 Gt/yr between 1992 and 2017. The time series reveal that this rate accelerated about 10 years ago, leading to a rate of 137±25 Gt/yr between 2010 and 2017. Individual time series of different parts of the ice sheet show that these losses originate almost completely from the West Antarctic Ice Sheet and the Antarctic Peninsula. In contrast for East Antarctica, regions with negative and positive mass balances compensate each other almost entirely. In coastal East Antarctica, where the altimetric observations range back until 1978, the results show that the rate over 25 years continues very similarly also before 1992, which proves that the rates, observed here, can be considered as long-term rates. However, the monthly time series also reveal, that this trend is superimposed by interannual variations, which is crucial for the interpretation of these elevation changes. A comparison with mass time series from gravimetric observations and models of surface mass balance demonstrates the high consistency of the results. On the other hand, this comparison also reveals some discrepancies, indicating where the assumptions about the underlying processes need further improvements. Hence, this comparison provides new insights for the understanding of the processes contributing to the mass balance of the AIS.
This dissertation is based on two scientific publications. The first paper describes the validation and calibration of different products of altimetry using in situ data. Therefore, it also contains details towards the processing of kinematic GNSS-profiles which form the basis of this investigation. Based on these results, the second paper describes the reprocessing and the combination of different altimetry missions and analyzes the results of these multi-mission time series of Antarctic surface elevation changes. In conclusion, this work aims to contribute to a better understanding of the changes of the AIS under a changing climate. Furthermore, it also points out potential aspects for further improvements.:Zusammenfassung
Abstract
1. Einführung
1.1. Die polaren Eisschilde
1.2. Satellitengestützte Beobachtungsverfahren
2. Satellitenaltimetrie
2.1. Messprinzip
2.2. Komponenten der Oberflächenhöhenbestimmung
2.2.1. Orbitbestimmung
2.2.2. Distanzmessung
2.3. Missionen
2.4. Satellitenaltimetrie über Eisschilden
2.4.1. Analyse des Rückkehrsignals
2.4.2. Topografiekorrektion
2.4.3. Interferometrischer SAR-Modus
2.4.4. Bias bei Eisaltimetrie
3. Bestimmung von zeitlichen Variationen der Eisoberflächenhöhe
3.1. Methoden zur Bestimmung von Höhenänderungen
3.2. Kombination unterschiedlicher Missionen
4. Validierung
4.1. Messunsicherheiten und Arten der Validierung
4.2. Absolute Validierung mit kinematischen GNSS-Profilen
4.3. Validierung der Bestimmung von Höhenänderungen
5. Geophysikalische Interpretation
5.1. Von Höhenänderungen zur Eismassenbilanz
5.2. Vergleich unterschiedlicher Beobachtungsverfahren
6. Publikationen
PI. Validierung von Satellitenaltimetrie mittels kinematischem GNSS
PII. Multimissions-Satellitenaltimetrie über vier Jahrzehnte
7. Zusammenfassung und Ausblick
Literaturverzeichnis
|
53 |
Validierung satellitengestützter Oberflächenhöhen und Höhenänderungsraten in Nordostgrönland unter Verwendung von digitalen GeländemodellenLoebel, Erik 10 March 2020 (has links)
Satellitenaltimetrie ist ein Verfahren zur flächendeckenden Beobachtung von Oberflächenhöhen. In den Polarregionen spielen die daraus ableitbaren Höhenänderungsraten eine zentrale Rolle bei der Abschätzung von Massenbilanzen kontinentaler Eisschilde. Aktuell befindet sich eine Vielzahl solcher Altimetriesatelliten im Orbit. In Abhängigkeit vom Messverfahren und verbauten Instruments unterscheiden sich gemessene Höhen sowie der Einfluss systematischer Fehler. In dieser Masterarbeit werden für die Region Nordostgrönland Beobachtungen verschiedener Sensoren prozessiert, vergleichend interpretiert und teilweise validiert. Auswertungen erfolgen anhand digitaler Geländemodelle (DGM), wobei neben bereits etablierten Datensätzen ein Workflow zur automatisierten DGM-Generierung anhand von sehr hochaufgelösten optischen Satellitenaufnahmen vorgestellt sowie angewandt wird. Darauf aufbauend findet eine umfassende Validierung der Eisoberflächenhöhen ATL06 des im September 2018 gestarteten ICESat-2 statt. Es wurde gezeigt, dass keine signifikanten systematischen Abweichungen unter den einzelnen Laserstrahlen sowie zwischen aufsteigenden und absteigenden Satellitenspuren bestehen. Auf dem Eisschild wurden Abweichungen bis zu 10 cm und in den Küstengletscherregionen bis zu 70 cm errechnet, wobei das Genauigkeitsniveau von ICESat-2 über dem der Referenzen liegt. Anhand eines ersten Anwendungsbeispieles konnte die sehr gute Eignung von ICESat-2 zur Co-Registrierung von DGMs gezeigt werden. Durch Hinzunahme von Beobachtungen aktueller Radaraltimeter wurden sämtliche über Eisschilden eingesetzte Altimetriesensoren und Messverfahren vergleichend analysiert. Der zeitlich variable Einfluss der Firnstruktur ist von der Wellenlänge des Messsignals abhängig und kann durch Nutzung eines entsprechenden Retracking-Verfahrens minimiert werden. Korrektionen auf Grundlage verschiedener Parameter des Rückkehrsignals sind für den grönländischen Eisschild ungeeignet. Untersuchungen des Topografieeinflusses auf die Beobachtung zeigen ein enormes Fehlerpotential pulslimitierter Radarsysteme ab Geländeneigungen von 0,3°, wohingegen das Laseraltimeter ICESat-2 eine präzise Vermessung rauer Gebirgs- und Gletscherregionen ermöglicht.
|
54 |
Studies to Improve Estimation of the Electromagnetic Bias in Radar AltimetrySmith, Justin DeWitt 14 May 2003 (has links) (PDF)
In May of 2000 Jason-1, a joint project between NASA and the French space agency CNES, will be launched. Its mission is to continue the highly successful gathering of data which TOPEX/Poseidon has collected since August of 1992. The main goal of Jason-1 is to achieve higher accuracy in measuring the mean sea level (MSL). In order to do so, the electromagnetic (EM) bias must be estimated more accurately because it is the largest contributing error. This thesis presents two different studies which add to the knowledge and improve estimation of the EM bias, and thus assists Jason-1 in achieving its primary goal. Oceanographic data collected from two different experiments are analyzed; on in the Gulf of Mexico (GME) and the other in Bass Strait, Australia (BSE). The first study is a spatial analysis of the backscattered power versus the phase of the wave. Its purpose is to determine why the normalized EM bias stops increasing and levels out at high wind speeds (about 11 m/s) and then decreases at higher wind speeds. Two possible causes are investigated. First, it could be due to a shift in the backscatter power modulation to the forward or rear face of the wave crests. Second, it may be due to the backscatter power becoming more homogeneous throughout the wave profile. This study is novel because it uses the knowledge of the spatial distribution of both the backscatter and wave displacement for the study of the EM bias. Both contribute to the EM bias decrease, but the latter cause seems to be the dominant effect. This study is performed on GME data. The second study uses two different nonparametric regression (NPR) techniques to estimate the EM bias. A recent study of satellite data from the TOPEX/Poseidon altimeter supports that the bias is modeled better using NPR regression. A traditional parametric fit is compared to two NPR techniques with GME data. The parametric fit is a variation of NASA's equation used to estimate EM bias for their Geophysical Data Records (GDRs). The two NPR techniques used are the Nadaraya-Watson Regression (NWR) and Local Linear Regression (LLR) estimators. Two smoothing kernel functions are used with each NPR technique, namely the Gaussian and the Epanechnikov kernels. NPR methods essentially consist of statistically smoothing the measured EM bias estimates are compared in the wind and significant wave height plane. Another recent study has shown that wave slope is strongly correlated to EM bias. With this knowledge, EM bias is estimated over several two-dimensional planes which include wave slope in attempt to reduce the residual bias. This portion of the study is performed on GME and BSE data. It is shown that a combination of slope, significant wave height, and wind speed used in conjunction with these NPR methods produces the best EM bias estimate for tower data.
|
55 |
The hydrostatic control of load-induced height changes above subglacial Lake VostokRichter, Andreas, Schröder, Ludwig, Scheinert, Mirko, Popov, Sergey V., Groh, Andreas, Willen, Matthias, Horwath, Martin, Dietrich, Reinhard 21 May 2024 (has links)
Lake Vostok, East Antarctica, represents an extensive water surface at the base of the ice sheet. Snow, ice and atmospheric pressure loads applied anywhere within the lake area produce a hydrostatic response, involving deformations of the ice surface, ice–water interface and particle horizons. A modelling scheme is developed to derive height changes of these surfaces for a given load pattern. It is applied to a series of load scenarios, and predictions based on load fields derived from a regional climate model are compared to observational datasets. Our results show that surface height changes due to snow-buildup anomalies are damped over the lake area, reducing the spatial standard deviation by one-third. The response to air pressure variations, in turn, adds surface height variability. Atmospheric pressure loads may produce height changes of up to 4 cm at daily resolution, but decay rapidly with integration time. The hydrostatic load response has no significant impact neither on ICESat laser campaign biases determined over the lake area nor on vertical particle movements derived from GNSS observations.
|
56 |
Couplage des observations spatiales dynamiques et biologiques pour la restitution des circulations océaniques : une approche conjointe par assimilation de données altimétriques et de traceurs / Coupling of dynamical and biological space observations for the control of ocean circulations : a joint approach through assimilation of altimeter and chlorophyll dataGaultier, Lucile 16 October 2013 (has links)
Depuis quelques années, les observations spatiales des traceurs, comme la température de surface de l'océan (SST) ou la couleur de l'océan, ont révélé la présence de filaments à sous-mésoéchelle, qui ne peuvent être détectées par les satellites altimétriques. Ce travail de thèse explore la possibilité d'utiliser les informations dynamiques contenues dans les images traceur haute résolution pour compléter l'estimation de la dynamique océanique de surface effectuée par les satellites altimétriques. Pour ce faire, la méthode d'inversion développée est inspirée de l'assimilation de données images. A l'aide d'une fonction coût, on mesure la distance entre une image du flot dynamique et l'image des structures présentes sur le traceur. On a choisi pour cette étude d'utiliser le FSLE (Finite-Size Lyapunov Exponents) comme proxy image de la dynamique. Cette méthode est testée avec succès sur plusieurs cas test d'observations spatiales. Un modèle de processus couplé physique-biogéochimie ainsi qu'un modèle réaliste de la mer des Salomon sont utilisés pour estimer l'erreur associée à la méthode d'inversion et la pertinence de la correction effectuée. L'utilisation conjointe d'images traceurs et de données altimétriques présente un fort intérêt pour le contrôle de la circulation océanique. / High resolution sensors of tracers such as the Sea Surface Temperature or the Ocean Color reveal small structures at the submesoscale, which are not seen by altimetry. Therefore, this thesis explores the feasibility of using tracer information at the submesoscales to complement the control of ocean dynamic fields that emerge from altimeter data analysis at larger scales. To do so, an image data assimilation strategy (i.e. inversion of images) is developed in which a cost-function is built that minimizes the misfits between image of submesoscale flow structure and tracer images. In the present work, we have chosen as an image of submesoscale flow structure the Finite-Size Lyapunov Exponents (FSLE). This method has been successfully tested on several areas using tracer and altimetric observations from space A high resolution physico-biogeochemical coupled model of process and a high resolution realistic model of the Solomon sea have been used to assess the error associated with the inversion and the efficiency of the correction on the oceanic circulation. These results show the benefits of the joint use of tracer image and altimetric data for the control of ocean circulations.
|
57 |
Caracterização da elevação do Rio Grande a partir de elementos do campo de gravidade terrestre / Characterization of the Rio Grande Rise from elements of the terrestrial gravity fieldDicezare, Marília Takaguti 05 February 2018 (has links)
Dados de altimetria por satélite contêm informações importantes para o mapeamento de estruturas tectônicas em regiões oceânicas, como falhas, zonas de fratura e montes submarinos. A grande disponibilidade e densidade desses dados permitem a identificação de feições do assoalho oceânico com boa precisão. Este trabalho tem como objetivo investigar as características estruturais da Elevação do Rio Grande, no Atlântico Sul, através de elementos do campo de gravidade terrestre. Para isso, são utilizados dados de altura da superfície do mar (SSH) provenientes dos satélites das missões ERS1-GM, Geosat-GM e Seasat. Com o cálculo da derivada direcional da SSH ao longo das trilhas ascendentes e descendentes dos satélites, foram obtidos os gradientes de superfície do mar (SSG), que ressaltam os curtos comprimentos de ondas associados às importantes feições oceânicas estudadas. Também foram calculados os gradientes da altura geoidal (desvio da vertical) para auxiliar na interpretação do sinal da SSG. Através da SSH foi possível identificar estruturas de maior porte, como o rift da elevação, e algumas fraturas e montes submarinos maiores. Por outro lado, a SSG forneceu maiores detalhes sobre as feições já caracterizadas pela SSH e de toda a região, revelando também diversas outras estruturas de menor dimensão. O posicionamento das feições identificadas por ambas as grandezas, SSH e SSG, é bastante preciso. Entretanto, fatores como a direção e a orientação das trilhas dos satélites e a presença de estruturas adjacentes podem influenciar a resposta da SSG para uma determinada feição tectônica, por isso, as trilhas ascendentes e descendentes dos três satélites podem apresentar respostas diferenciadas. Sendo assim, recomenda-se analisar os dois conjuntos de trilhas de várias missões altimétricas para obter maiores informações das características estruturais das feições investigadas. O estudo também permitiu identificar possíveis estruturas com uma resposta característica de montes submarinos, nas trilhas descendentes de SSH, que não foram caracterizados anteriormente na literatura e não possuem correspondente nos modelos topográficos/batimétricos. / Satellite altimetry data contain important information for mapping tectonic structures in oceanic regions, such as faults, fracture zones and seamounts. The great availability and spatial density of these data allow one to identify ocean floor features with good accuracy. This work aims to investigate structural characteristics of the Rio Grande Rise, in South Atlantic, through elements of the terrestrial gravity field. We used sea surface height (SSH) data from satellite missions ERS1-GM, Geosat-GM and Seasat to calculate sea surface gradients (SSG), which are the SSH directional derivative along the ascending and descending satellite tracks. SSG emphasize the short wavelengths associated with the important oceanic features studied. Geoid gradients (deflection of the vertical) were also calculated to assist in the interpretation of the SSG signal. By analyzing sea surface heights, it is possible to identify larger structures, such as the rift of the rise, some fractures and large seamounts. In contrast, sea surface gradients provide greater details of the features characterized by the SSH and the entire area, also revealing several smaller seamounts. The positioning of the structures identified by both SSH and SSG is fairly accurate. However, factors such as direction and orientation of the satellite tracks and the presence of adjacent structures may influence the SSG response to a given tectonic feature. For this reason, the ascending and descending tracks of the three satellites may have different responses. Therefore, it is recommended that one analyzes the two sets of tracks from the several altimetric missions to obtain more information on the structural characteristics of the features. The study also allowed us to identify possible structures with a characteristic response of seamounts on SSH descending tracks, which were not previously characterized in the literature and do not have a similar correspondent in topographic/bathymetric models.
|
58 |
Caracterização da elevação do Rio Grande a partir de elementos do campo de gravidade terrestre / Characterization of the Rio Grande Rise from elements of the terrestrial gravity fieldMarília Takaguti Dicezare 05 February 2018 (has links)
Dados de altimetria por satélite contêm informações importantes para o mapeamento de estruturas tectônicas em regiões oceânicas, como falhas, zonas de fratura e montes submarinos. A grande disponibilidade e densidade desses dados permitem a identificação de feições do assoalho oceânico com boa precisão. Este trabalho tem como objetivo investigar as características estruturais da Elevação do Rio Grande, no Atlântico Sul, através de elementos do campo de gravidade terrestre. Para isso, são utilizados dados de altura da superfície do mar (SSH) provenientes dos satélites das missões ERS1-GM, Geosat-GM e Seasat. Com o cálculo da derivada direcional da SSH ao longo das trilhas ascendentes e descendentes dos satélites, foram obtidos os gradientes de superfície do mar (SSG), que ressaltam os curtos comprimentos de ondas associados às importantes feições oceânicas estudadas. Também foram calculados os gradientes da altura geoidal (desvio da vertical) para auxiliar na interpretação do sinal da SSG. Através da SSH foi possível identificar estruturas de maior porte, como o rift da elevação, e algumas fraturas e montes submarinos maiores. Por outro lado, a SSG forneceu maiores detalhes sobre as feições já caracterizadas pela SSH e de toda a região, revelando também diversas outras estruturas de menor dimensão. O posicionamento das feições identificadas por ambas as grandezas, SSH e SSG, é bastante preciso. Entretanto, fatores como a direção e a orientação das trilhas dos satélites e a presença de estruturas adjacentes podem influenciar a resposta da SSG para uma determinada feição tectônica, por isso, as trilhas ascendentes e descendentes dos três satélites podem apresentar respostas diferenciadas. Sendo assim, recomenda-se analisar os dois conjuntos de trilhas de várias missões altimétricas para obter maiores informações das características estruturais das feições investigadas. O estudo também permitiu identificar possíveis estruturas com uma resposta característica de montes submarinos, nas trilhas descendentes de SSH, que não foram caracterizados anteriormente na literatura e não possuem correspondente nos modelos topográficos/batimétricos. / Satellite altimetry data contain important information for mapping tectonic structures in oceanic regions, such as faults, fracture zones and seamounts. The great availability and spatial density of these data allow one to identify ocean floor features with good accuracy. This work aims to investigate structural characteristics of the Rio Grande Rise, in South Atlantic, through elements of the terrestrial gravity field. We used sea surface height (SSH) data from satellite missions ERS1-GM, Geosat-GM and Seasat to calculate sea surface gradients (SSG), which are the SSH directional derivative along the ascending and descending satellite tracks. SSG emphasize the short wavelengths associated with the important oceanic features studied. Geoid gradients (deflection of the vertical) were also calculated to assist in the interpretation of the SSG signal. By analyzing sea surface heights, it is possible to identify larger structures, such as the rift of the rise, some fractures and large seamounts. In contrast, sea surface gradients provide greater details of the features characterized by the SSH and the entire area, also revealing several smaller seamounts. The positioning of the structures identified by both SSH and SSG is fairly accurate. However, factors such as direction and orientation of the satellite tracks and the presence of adjacent structures may influence the SSG response to a given tectonic feature. For this reason, the ascending and descending tracks of the three satellites may have different responses. Therefore, it is recommended that one analyzes the two sets of tracks from the several altimetric missions to obtain more information on the structural characteristics of the features. The study also allowed us to identify possible structures with a characteristic response of seamounts on SSH descending tracks, which were not previously characterized in the literature and do not have a similar correspondent in topographic/bathymetric models.
|
59 |
A utilização de modelos geoidais e altimetria por satélite no estudo das variabilidades no nível do mar e correntes geostróficas no Atlântico Sul e região da Confluência Brasil Malvinas / On the use of geoidal models and satellite altimetry for studying the variabilities of sea level and geostrophic currents in the South Atlantic and Brazil Malvinas Confluence RegionAlexandre Bernardino Lopes 20 September 2010 (has links)
A variação do nível do mar em relação ao geóide é conhecida como Topografia Dinâmica do oceano, cuja determinação é importante no estudo da circulação geostrófica, vórtices e outros fenômenos. O sinal do geóide predomina na definição da topografia dinâmica em todos os comprimentos de onda, ou seja, o nível do mar está intimamente ligado ao campo geopotencial. Os modelos geoidais globais anteriores ao GRACE eram precisos para comprimentos de onda com centenas de quilômetros, já em curtos comprimentos de onda (menores que 100 km) esses modelos não possuíam resolução suficiente, prejudicando assim a determinação da TD e, conseqüentemente, o estudo de fenômenos com comprimentos de ondas na faixa de 100 a 200 km. No desenvolvimento do modelo EGM96, foram inseridos novos dados gravimétricos de superfície, além de dados de órbitas de satélites e altimetria, obtendo-se assim melhora considerável em relação ao modelo OSO91A (incorporado aos dados do TOPEX/Poseidon); ainda sim, o modelo EGM96 possui erro de aproximadamente 18 cm, que é considerado alto para várias aplicações oceanográficas. Recentemente, foram divulgados os modelos globais do campo de gravidade EIGEN-5C (obtido através dos dados do GRACE) e EGM2008, completos para grau e ordem 360 e 2159 em termos de coeficientes harmônicos esféricos, respectivamente; estes modelos possibilitaram a estimativa de correntes com resolução e precisão superior ao modelo EGM96. No presente trabalho, os modelos geoidais citados acima, juntamente com o modelo de nível médio do mar DNSC08, foram usados na determinação da topografia dinâmica média e das correntes geostróficas absolutas médias (no período de 2003 a 2008) utilizando o método de filtragem SSA no Atlântico Sul (20o N a 55o S, 80o W a 20o E) . Os resultados foram comparados com produtos do modelo numérico HYCOM, demonstrando que os modelos geoidais recentes (EIGEN-5C e EGM2008) apresentaram resultados satisfatórios na determinação da TDM e correntes, com a plena identificação das principais feições de grande e meso escala, o que não ocorre com a TDM do EGM96. A Corrente do Brasil, entre 20°S e 30°S, na isóbata de 200 m, apresentou velocidades resultantes médias de aproximadamente 0.20 m/s (desvio padrão de 0.09 m/s) quando determinada com a TDM-EGM2008, 0.22 m/s (desvio padrão de 0.12 m/s) vii utilizando a TDM-EIGEN-5C, embora os ruídos interfiram na estimativa, e 0.30 m/s (desvio padrão de 0.17 m/s) considerando a TDM-EGM96; o modelo numérico HYCOM forneceu velocidade de 0.25 m/s (desvio padrão de 0.13 m/s) na mesma região. Estatisticamente, as correntes do modelo TDM-EGM08 possuem maior correlação espacial com o modelo numérico HYCOM, 0.7 para u (componente EW) e 0.69 para v (componente NS); por outro lado, as correntes oriundas da TDM-EIGEN-5C apresentaram uma correlação de 0.62 para u e 0.64 para v, enquanto que as correntes do modelo TDM-EGM96 apresentaram uma correlação de 0.10 para u e 0.11 para v. Uma alternativa no uso de dados de altimetria de satélites (Jason, por exemplo) se encontra em dados de altimetria multi-satélites combinados com resultados de medições in-situ, submetidos a análise objetiva (são portanto dados combinados, MERGED, fornecidos pela AVISO); com esses dados se tem significativo aumento de precisão e resolução dos dados de altimetria, da topografia dinâmica e das correntes geostróficas. Na região que engloba a Confluência Brasil Malvinas (50o S a 20o S , 70 o W a 30o W) foram analisadas as variações temporais da topografia dinâmica e correntes oriundas de altimetria e do modelo geoidal EGM2008. Na análise específica desta região, verificouse que, apesar das principais feições terem sido identificadas, os dados de altimetria ainda carecem de resolução necessária no estudo das mesmas. O modelo EGM2008 apresentou os melhores resultados que os outros modelos (comparando com o modelo HYCOM e dados combinados de AVISO), devido à sua resolução espacial. / The variations of sea level relative to the geoid are known as Dynamic Ocean Topography (DOT), whose determination is important in studies of the geostrophic circulation, eddies and other phenomena. The sign of the geoid predominates in the definition of dynamic topography at all wavelengths, ie, sea level is closely linked to the geopotential field. Global geoid models prior to GRACE were precise for wavelengths of hundreds of kilometers, but in short wavelengths (less than 100 km) these models did not have enough resolution, thus impairing the determination of DOT and therefore the study of phenomena with wavelengths in the range of 100-200 km. In developing the EGM96, new surface gravity data were incorporated into the modeling, from satellite orbits and altimetry, resulting in a considerable improvement over the previous OSO91A (incorporated to TOPEX / Poseidon data); still EGM96 had a standard deviation of about 18 cm, considered too high for many oceanographic applications. Recently, global models of the gravity field were published, EIGEN-5C (obtained from GRACE data) and EGM2008, complete to degree and order 360 and 2159 in terms of spherical harmonic coefficients, respectively; these models allowed the estimation of currents with resolution and accuracy better than model EGM96. In this work, the geoid models mentioned above, along with models of mean sea level such as DNSC08, were used in the determination of DOT and absolute geostrophic currents (in 2003-2008) using the filtering method SSA (Singular Spectrum Analysis) in South Atlantic (20o N - 55o S , 80 o W - 20o E) . The results were compared with products from HYCOM hydrodynamic numerical model and show that recent geoid models (EIGEN-5C and EGM2008) lead to satisfactory results in determining the Average Dynamic Topography (ADT) and currents, with full identification of the main features of large and meso scales, which does not occur with ADT_EGM96. The Brazil Current (20°S-30°S), in the 200 m isobath, had average speed results of approximately 0.20 m/s (standard deviation 0.09 m/s) when computed with ADT-EGM2008, 0.22 m/s (standard deviation 0.12 m/s) by using ADT_EIGEN-5C, despite noise interference with the estimate, and 0.30 m/s (standard deviation 0.17 m/s) considering the ADT_EGM96; the numerical model HYCOM provided speed of 0.25 m/s (standard deviation 0.13 m/s) in the same region. Statistically, the currents based on model ADT_EGM08 have higher correlation with the numerical model HYCOM, 0.70 for u (EW component) and 0.69 for v (NS component); on the other hand, the currents computed with ADT_EIGEN-5C had correlations of 0.62 for u and 0.64 for v, while currents estimated from ADT_EGM96 showed correlations of 0.10 for u and 0.11 for v. An alternative in the use altimetry data (Jason, for example) is found in altimetry multi-satellites data combined with results of measurements in-situ, submitted to objective analysis; with these data, a significant increase of precision and resolution is reached for the altimetry data, dynamic topography and geostrophyc currents. In the region encompassing the Brazil Malvinas Confluence (50o S - 20o S , 70 o W - 30o W) were analyzed temporal variations of DOT and currents derived from altimetry and geoid model EGM2008. In the specific analysis of this region, it was found that although the main features have been identified, the altimetry data still lacks resolution to study them.The model EGM2008 showed the best results (comparing with the HYCOM model and combined data of AVISO), due to their spatial resolutions.
|
60 |
A utilização de modelos geoidais e altimetria por satélite no estudo das variabilidades no nível do mar e correntes geostróficas no Atlântico Sul e região da Confluência Brasil Malvinas / On the use of geoidal models and satellite altimetry for studying the variabilities of sea level and geostrophic currents in the South Atlantic and Brazil Malvinas Confluence RegionLopes, Alexandre Bernardino 20 September 2010 (has links)
A variação do nível do mar em relação ao geóide é conhecida como Topografia Dinâmica do oceano, cuja determinação é importante no estudo da circulação geostrófica, vórtices e outros fenômenos. O sinal do geóide predomina na definição da topografia dinâmica em todos os comprimentos de onda, ou seja, o nível do mar está intimamente ligado ao campo geopotencial. Os modelos geoidais globais anteriores ao GRACE eram precisos para comprimentos de onda com centenas de quilômetros, já em curtos comprimentos de onda (menores que 100 km) esses modelos não possuíam resolução suficiente, prejudicando assim a determinação da TD e, conseqüentemente, o estudo de fenômenos com comprimentos de ondas na faixa de 100 a 200 km. No desenvolvimento do modelo EGM96, foram inseridos novos dados gravimétricos de superfície, além de dados de órbitas de satélites e altimetria, obtendo-se assim melhora considerável em relação ao modelo OSO91A (incorporado aos dados do TOPEX/Poseidon); ainda sim, o modelo EGM96 possui erro de aproximadamente 18 cm, que é considerado alto para várias aplicações oceanográficas. Recentemente, foram divulgados os modelos globais do campo de gravidade EIGEN-5C (obtido através dos dados do GRACE) e EGM2008, completos para grau e ordem 360 e 2159 em termos de coeficientes harmônicos esféricos, respectivamente; estes modelos possibilitaram a estimativa de correntes com resolução e precisão superior ao modelo EGM96. No presente trabalho, os modelos geoidais citados acima, juntamente com o modelo de nível médio do mar DNSC08, foram usados na determinação da topografia dinâmica média e das correntes geostróficas absolutas médias (no período de 2003 a 2008) utilizando o método de filtragem SSA no Atlântico Sul (20o N a 55o S, 80o W a 20o E) . Os resultados foram comparados com produtos do modelo numérico HYCOM, demonstrando que os modelos geoidais recentes (EIGEN-5C e EGM2008) apresentaram resultados satisfatórios na determinação da TDM e correntes, com a plena identificação das principais feições de grande e meso escala, o que não ocorre com a TDM do EGM96. A Corrente do Brasil, entre 20°S e 30°S, na isóbata de 200 m, apresentou velocidades resultantes médias de aproximadamente 0.20 m/s (desvio padrão de 0.09 m/s) quando determinada com a TDM-EGM2008, 0.22 m/s (desvio padrão de 0.12 m/s) vii utilizando a TDM-EIGEN-5C, embora os ruídos interfiram na estimativa, e 0.30 m/s (desvio padrão de 0.17 m/s) considerando a TDM-EGM96; o modelo numérico HYCOM forneceu velocidade de 0.25 m/s (desvio padrão de 0.13 m/s) na mesma região. Estatisticamente, as correntes do modelo TDM-EGM08 possuem maior correlação espacial com o modelo numérico HYCOM, 0.7 para u (componente EW) e 0.69 para v (componente NS); por outro lado, as correntes oriundas da TDM-EIGEN-5C apresentaram uma correlação de 0.62 para u e 0.64 para v, enquanto que as correntes do modelo TDM-EGM96 apresentaram uma correlação de 0.10 para u e 0.11 para v. Uma alternativa no uso de dados de altimetria de satélites (Jason, por exemplo) se encontra em dados de altimetria multi-satélites combinados com resultados de medições in-situ, submetidos a análise objetiva (são portanto dados combinados, MERGED, fornecidos pela AVISO); com esses dados se tem significativo aumento de precisão e resolução dos dados de altimetria, da topografia dinâmica e das correntes geostróficas. Na região que engloba a Confluência Brasil Malvinas (50o S a 20o S , 70 o W a 30o W) foram analisadas as variações temporais da topografia dinâmica e correntes oriundas de altimetria e do modelo geoidal EGM2008. Na análise específica desta região, verificouse que, apesar das principais feições terem sido identificadas, os dados de altimetria ainda carecem de resolução necessária no estudo das mesmas. O modelo EGM2008 apresentou os melhores resultados que os outros modelos (comparando com o modelo HYCOM e dados combinados de AVISO), devido à sua resolução espacial. / The variations of sea level relative to the geoid are known as Dynamic Ocean Topography (DOT), whose determination is important in studies of the geostrophic circulation, eddies and other phenomena. The sign of the geoid predominates in the definition of dynamic topography at all wavelengths, ie, sea level is closely linked to the geopotential field. Global geoid models prior to GRACE were precise for wavelengths of hundreds of kilometers, but in short wavelengths (less than 100 km) these models did not have enough resolution, thus impairing the determination of DOT and therefore the study of phenomena with wavelengths in the range of 100-200 km. In developing the EGM96, new surface gravity data were incorporated into the modeling, from satellite orbits and altimetry, resulting in a considerable improvement over the previous OSO91A (incorporated to TOPEX / Poseidon data); still EGM96 had a standard deviation of about 18 cm, considered too high for many oceanographic applications. Recently, global models of the gravity field were published, EIGEN-5C (obtained from GRACE data) and EGM2008, complete to degree and order 360 and 2159 in terms of spherical harmonic coefficients, respectively; these models allowed the estimation of currents with resolution and accuracy better than model EGM96. In this work, the geoid models mentioned above, along with models of mean sea level such as DNSC08, were used in the determination of DOT and absolute geostrophic currents (in 2003-2008) using the filtering method SSA (Singular Spectrum Analysis) in South Atlantic (20o N - 55o S , 80 o W - 20o E) . The results were compared with products from HYCOM hydrodynamic numerical model and show that recent geoid models (EIGEN-5C and EGM2008) lead to satisfactory results in determining the Average Dynamic Topography (ADT) and currents, with full identification of the main features of large and meso scales, which does not occur with ADT_EGM96. The Brazil Current (20°S-30°S), in the 200 m isobath, had average speed results of approximately 0.20 m/s (standard deviation 0.09 m/s) when computed with ADT-EGM2008, 0.22 m/s (standard deviation 0.12 m/s) by using ADT_EIGEN-5C, despite noise interference with the estimate, and 0.30 m/s (standard deviation 0.17 m/s) considering the ADT_EGM96; the numerical model HYCOM provided speed of 0.25 m/s (standard deviation 0.13 m/s) in the same region. Statistically, the currents based on model ADT_EGM08 have higher correlation with the numerical model HYCOM, 0.70 for u (EW component) and 0.69 for v (NS component); on the other hand, the currents computed with ADT_EIGEN-5C had correlations of 0.62 for u and 0.64 for v, while currents estimated from ADT_EGM96 showed correlations of 0.10 for u and 0.11 for v. An alternative in the use altimetry data (Jason, for example) is found in altimetry multi-satellites data combined with results of measurements in-situ, submitted to objective analysis; with these data, a significant increase of precision and resolution is reached for the altimetry data, dynamic topography and geostrophyc currents. In the region encompassing the Brazil Malvinas Confluence (50o S - 20o S , 70 o W - 30o W) were analyzed temporal variations of DOT and currents derived from altimetry and geoid model EGM2008. In the specific analysis of this region, it was found that although the main features have been identified, the altimetry data still lacks resolution to study them.The model EGM2008 showed the best results (comparing with the HYCOM model and combined data of AVISO), due to their spatial resolutions.
|
Page generated in 0.0429 seconds