Spelling suggestions: "subject:"aluminumsilica"" "subject:"aluminossilicosa""
1 |
Evolution of the Eutectic Microstructure in Chemically Modified and Unmodified Al-Si AlloysGuthy, Hema Vardhan 04 April 2002 (has links)
Aluminum-silicon alloys are an important class of commercial non-ferrous alloys having wide ranging applications in the automotive and aerospace industries. Typical aluminum-silicon alloys have two major microstructural components, namely primary aluminum and an aluminum-silicon eutectic. While nucleation and growth of the primary aluminum in the form of dendrites have been well understood, the understanding of the evolution of the Al-Si eutectic is still incomplete. The microstructural changes caused by the addition of strontium to these alloys is another important phenomenon that still puzzles the scientific community. In this thesis, an effort has been made to understand the evolution of the Al-Si eutectic in the presence and absence of strontium through two sets of experiments: (1) Quench experiments, and (2) sessile drop experiments. The quench experiments were designed to freeze the evolution of the eutectic after various time intervals along the eutectic plateau. The sessile drop experiments were designed to study the role of surface energy in the formation of the eutectic in the presence and absence of strontium. Both experiments were conducted on high purity alloys. Using observations from these experiments, possible mechanis(s) for the evolution of the Al-Si eutectic and the effects of strontium on modifying the eutectic morphology are proposed.
|
2 |
Diffusion of uranium and aluminum-silicon eutectic alloyGreen, Donald Ralph, January 1957 (has links)
Thesis (M.S.)--University of Idaho.
|
3 |
Welding of cast A359/SiC/10p metal matrix compositesKothari, Mitul Arvind 01 November 2005 (has links)
Welding of metal matrix composites (MMCs) is an alternative to their
mechanical joining, since they are difficult to machine. Published literature in fusion
welding of similar composites shows metallurgical problems. This study investigates the
weldability of A359/SiC/10p aluminum SiC MMC. Statistical experiments were
performed to identify the significant variables and their effects on the hardness, tensile
and bending strengths, ductility, and microstructure of the weld. Finite Element
Analysis (FEA) was used to predict the preheat temperature field across the weld and the
weld pool temperature.
Welding current, welding speed, and the preheat temperature (300-350??C)
affected the weld quality significantly. It was seen that the fracture of the welded
specimens was either in the base MMC or in the weld indicating a stronger interface
between the weld and the base MMC. Oxides formation was controlled along the weld
joint. Low heat inputs provided higher weld strengths and better weld integrity. It was
found that the weld strengths were approximately 85% of the parent material strength.
The weld region had higher extent of uniform mixing of base and filler metal when
welded at low currents and high welding speeds. These adequate thermal conditions
helped the SiC particles to stay in the central weld region. The interface reaction
between the matrix and SiC particles was hindered due to controlled heat inputs and
formation of harmful Al4C3 flakes was suppressed. The hardness values were found to
be slightly higher in the base metal rich region. There was no significant loss in the
hardness of the heat affected zone. The ductility of the weld was considerably increased
to 6.0-7.0% due to the addition of Al-Si filler metal.
|
4 |
Processing and creep behaviour of silicon carbide-platelet reinforced alumina /Ham-Su, Rosaura. January 1900 (has links)
Thesis (Ph.D.) -- McMaster University, 1998. / Includes bibliographical references (leaves 145-150). Also available via World Wide Web.
|
5 |
Liquid metal based high temperature concentrated solar power: Cost considerationsWilk, Gregory 27 May 2016 (has links)
Current concentrated solar power plants (CSP) use molten salt at 565°C as a heat transfer and energy storage fluid. Due to thermal energy storage (TES), these solar plants can deliver dispatachable electricity to the grid; however, the levelized cost of electricity (LCOE) for these plants is 12-15 c/kWh, about 2.5 times as high as fossil fuel electricity generation. Molten salt technology limits peak operating temperatures to 565°C and a heat engine efficiency of 40%. Liquid metal (LM), however, can reach >1350°C, and potentially utilize a more efficient (60%) heat engine and realize cost reductions. A 1350 °C LM-CSP plant would require ceramic containment, inert atmosphere containment, additional solar flux concentration, and redesigned internal receiver. It was initially unclear if these changes and additions for LM-CSP were technically feasible and could lower the LCOE compared to LS-CSP. To answer this question, a LM-CSP plant was designed with the same thermal input as a published LS-CSP plant. A graphite internal cavity receiver with secondary concentration heated liquid Sn to 1400°C and transferred heat to a 2-phase Al-Si fluid for 9 hours of thermal energy storage. Input heat to the combined power cycle was 1350°C and had 60% thermal efficiency for a gross output of 168 MW. The cost of this LM-CSP was estimated by applying material cost factors to the designed geometry and scaling construction costs from published LS-CSP estimates. Furthermore, graphite was experimentally tested for reactivity with liquid Sn, successful reaction bonds, and successful mechanical seals. The result is switching to molten metal can reduce CSP costs by 30% and graphite pipes, valves, and seals are possible at least at 400°C.
|
6 |
Molecular dynamics simulations of metalsJelinek, Bohumir, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
|
7 |
Obtenção e caracterização de novas ligas Al-Si-Mg para tixoconformaçãoPaes, Marcelo 13 February 2004 (has links)
Orientador: Eugenio Jose Zoqui / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-03T21:11:41Z (GMT). No. of bitstreams: 1
Paes_Marcelo_D.pdf: 11164315 bytes, checksum: 3d4bc560d4d6f7821f72b5bd5e650bcd (MD5)
Previous issue date: 2004 / Resumo: Este trabalho avaliou a influência do teor de silício e magnésio na obtenção, processamento no estado semi-sólido e conseqüente comportamento mecânico final de ligas reofundidas. Foram propostas novas ligas Al-Si-Mg com 1, 4 e 7% de Si e 0,5 e 1% de Mg que foram inicialmente produzidas por ultra-refino através da adição de refinador de grão Al-5Ti-1B. Foram realizados testes de DTA (análise térmica diferencial) para determinação das temperaturas de trabalho de cada liga. As amostras foram reaquecidas ao estado semi-sólido em três diferentes tempos (O, 90 e 21Os) para se deteminar a evolução macro e microestrutural das ligas. Em seguida, foram realizados testes de compressão a quente simulando um viscosimetro de placas paralelas com os mesmos parâmetros utilizados no reaquecimento. Em função da curva tensão de formação gerada, calculou-se a viscosidade de todas as ligas propostas. Observou-se um aumento do tamanho de grão com o aumento do teor de Si e de Mg. Da mesma forma, um aumento dos valores de fator de forma e tamanho de glóbulo foi observado. Verificou-se que o Mg tem um efeito deletério em ligas Al-Si-Mgpara aplicação em processos de tixoconformação. O Si tem um efeito importante na viscosidade de forma a reduzi-Ia com ligas de baixo teor de Mg / Abstract: This work evaluated the influence of Mg and Si percentage on acquisition, thixoforming and fInal mechanical behaviour of rheocast alloys. lt was proposed new Al-Si-Mg alloys with 1, 4 and 7% Si and 0,5 and I%Mg that were produced by ultra-refining using Al-5Ti-1B grain refiner. DTA tests were performed to determine the suitable temperature corresponding to 0,45 solid fraction. Samples were reheated to the semi-solid state with three different holding times (O, 90 and 210s) to determine the macro and microstructural evolution of the alloys. Afier, compression tests using a parallel plate viscosimeter with the same parameters used in the heat treatment were performed. According to the stress-deformation curve the viscosity in all alloys were calculated. lt was observed as the Si and Mg percentage increases the grain size, globule size and shape factor increase either. Magnesiwn has a harmful effect in Al-Si-Mg alloys for thixoforming applications. Silicon has an important effect on reducing the viscosity with low Mg percentage / Doutorado / Materiais e Processos de Fabricação / Doutor em Engenharia Mecânica
|
8 |
Investigation on Improved Tapping Life in Automotive Die Cast Aluminum-Silicon Alloy ApplicationsBarooah, Rohan January 2018 (has links)
In the automotive industry, Al-Si alloy is widely used for manufacturing of various engine parts. Machinability of die-cast Al-12Si alloy is challenging due to severe abrasion and adhesion wear of the tools. Form tapping is a common method for generating internal threads in engine blocks. It is usually a finishing process on a production line. An unexpected tap failure may lead to significant scrap and high rework costs.
The objective of this research was to investigate the wear mechanisms of high-speed steel form taps when machining Al-12Si alloy. This research involved replicating the same process conditions as the industry partner to determine a feasible solution without changing the tap geometry or process parameters.
A critical region of wear on the crest was identified where the aluminum adhesion was acute. Intense abrasion wear occurred on the crest and flanks due to hard silicon precipitates. In this study, two methods were proposed for measuring linear and volumetric wear on the chamfered threads. The second and third chamfered threads experienced the most significant wear on the tap.
To improve wear-resistance of the form tap, PVD surface coatings were deposited on it. The preliminary tests of 12 surface coatings showed coating-delamination mostly on the critical region. A progressive wear study of the TiAlN coating showed an improvement in tap performance over the ZrN coating currently used. By the 4320th hole, the volumetric wear of the TiAlN coated tap was reduced by nearly 200% and 50% when compared against the uncoated and ZrN coated taps, respectively. / Thesis / Master of Applied Science (MASc)
|
9 |
The influence of microstructure on the crack initiation and propagation in Al-Si casting alloysBogdanoff, Toni January 2021 (has links)
For reducing the CO2 footprint in many industrial fields, the goal is to produce lighter components. The aluminium-silicon (Al-Si) cast alloys are promising candidates to fulfill these goals with a high weight-to-strength ratio, good corrosion properties, excellent castability, and recyclable material. However, the variations within these components need to be understood to produce high-performance components for critical applications. The main reason for the rejection in these applications is defects and microstructural features that reduce the mechanical properties. The addition of copper (Cu) is one way of increasing the mechanical properties in Al-Si alloys and is commonly used in the automotive industry. Casting defects harm the mechanical properties, and these defects can be reduced by improving the melt quality, the correct design of the component, and the gating system. The study aims to investigate the static mechanical properties and the crack initiation and propagation under cyclic loading in an Al-7Si-Mg cast alloy with state-of-the-art experiments. The main focuses were on the effect of the HIP process and the role of Cu addition. In-situ cyclic testing using a scanning electron microscope coupled with electron back-scattered diffraction, digital image correlation, focused ion beam (FIB) slicing, and computed tomography scanning was used to evaluate the complex interaction between the crack path and the microstructural features. The amount of Cu retained in the α-Al matrix in as-cast and heat-treated conditions significantly influenced the static mechanical properties by increasing yield strength and ultimate tensile strength with a decrease in elongation. The three-nearest-neighbor distance of eutectic Si and Cu-rich particles and crack tortuosity were new tools to describe the crack propagation in the alloys, showing that a reduced distance between the Cu-rich phases is detrimental for the mechanical properties. Three dimensional tomography using a FIB revealed that the alloy with 3.2 wt.% Cu had a significantly increased quantity of cracked Si particles and intermetallic phases ahead of the crack tip than the Cu-free alloy. The effect of Cu and HIP process in this work shows the complex interaction between the microstructural features and the mechanical properties, and this needs to be considered to produce high-performance components. / Ett sätt att nå målen med minskade koldioxidutsläpp inom industrin är att producera lättare komponenter. Aluminium-kisel (Al-Si) gjutna legeringar är därför ett bra alternativ då dessa legeringar har ett bra förhållande mellan hållfasthet och vikt, goda korrosionsegenskaper, utmärkt gjutbarhet och är ett återvinningsbart material. En av de största utmaningarna för att producera högpresterande komponenter för kritiska applikationer är variationerna i egenskaper inom dessa komponenter. Orsaken till att inte gjutna Al-Si legeringar andvänds i dessa applikationer är förståelsen av defekter och mikrostruktuella faser påverkar de mekaniska egenskaperna negativt. Koppar (Cu) tillsätts i Al-Si legeringar för att öka de mekaniska egenskaperna vilket ofta nyttjas inom bilindustrin. Hot isostatic pressing (HIP) prosessen är en annan möjlighet att förbättra de mekaniska egenskaperna genom att reducera porositeter i materialet. Studien syftar till att undersöka de mekaniska egenskaperna och sprickinitiering och spricktillväxt i en gjuten legering av Al-7Si-Mg med utmattningstestning i svepelektronmikroskop (SEM) i kombination med electron backscatter diffraction, digital image correlation och focused ion beam (FIB). Mängden Cu i Al-Si legeringen påverkade de statiska mekaniska egenskaperna genom att öka sträckgränsen och brottgränsen. Tillsats av Cu upp till 1.5 vikt.% påverkar inte spricktillväxten märkbart. Däremot förändras beteendet markant vid tillsatser av Cu på mer än 3.0 vikt.% som resulterade i en markant reducering i duktilitet. I det värmebehandlade materialet påverkades de mekaniska egenskaperna av Al-matrisen och mängden intermetalliska faser. Avståndet mellan Cu faserna och Si faserna används för att beskriva spricktillväxten i Al-Si legeringarna. Detta tillsammans med tredimensionell tomografi visade att legeringen med 3.2 vikt.% Cu hade en ökad mängd sprickor i området framför den avancerande sprickan, vilket inte den Cu fria legeringen visade. Al-Si legeringen som utsattes för HIP-processen och värmebehandlingen visade att materialets mikrostruktur i gjutet tillstånd påverkade resultatet. HIP processen slöt porositerena i alla undersökta prover och förbättrade de mekaniska egenskaperna. Dessa resultat kommer kunna användas för att konstruera mer högpresterande komponenter.
|
10 |
Induktive Erwärmung von Formplatinen für die WarmumformungVibrans, Tobias 21 December 2016 (has links) (PDF)
Die vorliegende Arbeit untersucht den Einsatz einer induktiven Längsfelderwärmung im Wärmebehandlungsprozess der direkten Warmumformung automobiler Karosserieblechbauteile. Zur Charakterisierung des Erwärmungsvorgangs werden sowohl experimentbasierte Regressionsmodelle als auch ein FEM-Simulationsmodell entwickelt. Der Einfluss der induktiven Erwärmung auf die Ausbildung der AlSi-Beschichtung, die Widerstandspunktschweißbarkeit so-wie die Korrosionsbeständigkeit gefertigter Blechbauteile wird dargelegt. Abschließend wird ein Anlagenkonzept entwickelt, das durch den Einsatz der induktiven Längsfelderwärmung eine Verringerung der Erwärmungsdauer um etwa 50 % sowie eine Verkürzung der erforderlichen Ofenlänge um etwa 37 % ermöglicht. / The present thesis investigates the usage of longitudinal induction heating in the austenitization process of direct press hardening. In order to describe the induction heating procedure, experiment-based regression models as well as a FEM model are developed. The influence of an induction heating process on the properties of press hardened parts with aluminum-silicon coating is depicted. Therefore, resistance spot welding tests, paint adhesion tests and corrosion tests are performed. Finally, a heating concept for series production including a longitudinal induction heating is developed, which allows a decrease in heating time of about 50 % and a reduction of furnace length of about 37 %.
|
Page generated in 0.0418 seconds