Spelling suggestions: "subject:"aluminiumoxinitride"" "subject:"aluminiumoxynitrid""
1 |
Computer simulation studies of spinel LiMn2O4 and spinel LiNiXMn2-XO4 (0≤x≤2)Malatji, Kemeridge Tumelo January 2019 (has links)
Thesis (Ph.D. (Physics)) -- University of Limpopo, 2019 / LiMn2O4 spinel (LMO) is a promising cathode material for secondary lithium-ion
batteries which, despite its high average voltage of lithium intercalation, suffers
crystal symmetry lowering due to the Jahn-Teller active six-fold Mn3+ cations.
Although Ni has been proposed as a suitable substitutional dopant to improve the
energy density of LiMn2O4 and enhance the average lithium intercalation voltage,
the thermodynamics of Ni incorporation and its effect on the electrochemical
properties of this spinel are not fully understood.
Firstly, structural, electronic and mechanical properties of spinel LiMn2O4 and
LiNixMn2-xO4 have been calculated out using density functional theory employing the
pseudo-potential plane-wave approach within the generalised gradient
approximation, together with Virtual Cluster Approximation. The structural
properties included equilibrium lattice parameters; electronic properties cover both
total and partial density of states and mechanical properties investigated elastic
properties of all systems. Secondly, the pressure variation of several properties was
investigated, from 0 GPa to 50 GPa. Nickel concentration was changed and the
systems LiNi0.25Mn1.75O4, LiNi0.5Mn1.5O4 LiNi0.75Mn1.25O4 and LiNi0.875Mn1.125O4 were
studied. Calculated lattice parameters for LiMn2O4 and LiNi0.5Mn1.5O4 systems are
consistent with the available experimental and literature results. The average
Mn(Ni)-O bond length for all systems was found to be 1.9 Å. The bond lengths
decreased with an increase in nickel content, except for LiNi0.75Mn1.25O4, which gave
the same results as LiNi0.25Mn1.75O4. Generally, analysis of electronic properties
predicted the nature of bonding for both pure and doped systems with partial density
of states showing the contribution of each metal in our systems. All systems are
shown to be metallic as it has been previously observed for pure spinel LiMn2O4,
and mechanical properties, as deduced from elastic properties, depicted their
stabilities.
Furthermore, the cluster expansion formalism was used to investigate the nickel
doped LiMn2O4 phase stabilities. The method determines stable multi-component
crystal structures and ranks metastable structures by the enthalpy of formation while iv
maintaining the predictive power and accuracy of first-principles density functional
methods. The ground-state phase diagram with occupancy of Mn 0.81 and Ni 0.31
generated various structures with different concentrations and symmetries. The
findings predict that all nickel doped LMO structures on the ground state line are
most likely stable. Relevant structures (Li4Ni8O16, Li12MnNi17O48, Li4Mn6Ni2O16,
Li4Mn7NiO16 and Li4Mn8O16) were selected on the basis of how well they weighed
the cross-validation (CV) score of 1.1 meV, which is a statistical way of describing
how good the cluster expansion is at predicting the energy of each stable structure.
Although the structures have different symmetries and space groups they were
further investigated by calculating the mechanical and vibrational properties, where
the elastic constants and phonon vibrations indicated that the structures are stable
in accordance with stability conditions of mechanical properties and phonon
dispersions.
Lastly, a computer program that identifies different site occupancy configurations for
any structure with arbitrary supercell size, space group or composition was
employed to investigate voltage profiles for LiNixMn2-xO4. The density functional
theory calculations, with a Hubbard Hamiltonian (DFT+U), was used to study the
thermodynamics of mixing for Li(Mn1-xNix)2O4 solid solution. The results suggested
that LiMn1.5Ni0.5O4 is the most stable composition from room temperature up to at
least 1000K, which is in excellent agreement with experiments. It was also found
that the configurational entropy is much lower than the maximum entropy at 1000K,
indicating that higher temperatures are required to reach a fully disordered solid
solution. The maximum average lithium intercalation voltage of 4.8 eV was
calculated for the LiMn1.5Ni0.5O4 composition which correlates very well with the
experimental value. The temperature has a negligible effect on the Li intercalation
voltage of the most stable composition. The approach presented here shows that
moderate Ni doping of the LiMn2O4 leads to a substantial change in the average
voltage of lithium intercalation, suggesting an attractive route for tuning the cathode
properties of this spinel. / National Research Foundation (NRF)
|
2 |
Étude par microscopie électronique en transmission du contrôle de la polarité des films III-N déposés sur saphir / Transmission electron microscopy study of polarity control in III-Nitride films grown on sapphire substratesStolyarchuk, Natalia 17 November 2017 (has links)
La polarité est une question critique pour le système de matériaux III-nitrures, qui a un impact sur la qualité des films épitaxies et la performance des dispositifs à base de nitrure. Mais la compréhension des mécanismes élémentaires responsables de l'établissement de la polarité N ou métallique des films sur le substrat non-polaire manque. Les concepts existants sont basés sur des observations empiriques et contiennent des résultats ambigus. Une des raisons principales est le manque d'outils analytiques, permettant la détermination localisée de la polarité et de la structure atomique des couches à l'époque, lorsque les concepts de contrôle de la polarité ont été établis. Dans ce travail, nous développons un concept de contrôle de la polarité dans les couches AlN et GaN épitaxies sur substrat de saphir par EPVOM. La polarité des couches est étudiée par microscopie électronique en transmission (MET) haute résolution corrigée des aberrations et par microscope électronique à balayage en transmission en champ sombre (HAADF-STEM). L'analyse des investigations expérimentales donne les principaux résultats suivants : (i) le mécanisme qui régit la sélection de la polarité ; (ii) la relation entre la nitruration de la surface et les domaines de polarité Al dans les films d'AlN N-polaire ; (iii) possibilité d’inverser la polarité N de films d’AlN de polarité mixte en introduisant un recuit sous oxygène. La compréhension de mécanisme par lequel la polarité est contrôlée ouvre les possibilités d'une ingénierie de polarité dans les films de nitrure et peut donner une idée de la compréhension du contrôle de la polarité dans d'autres systèmes de matériaux (par exemple, les oxydes). / Polarity is a critical issue for III-nitrides material system that has an impact on the quality of epitaxial films and the performance of nitride-based devices. But the understanding of the elementary mechanisms that are responsible for establishing metal or nitrogen polarity of the films on nonpolar substrate is lacking. The existing concepts are based on empirical observations and contain ambiguous results. One of the main reasons for that is the lack of precise analytical tools, allowing localized determination of polarity and atomic structure of layers, at the time, when main concepts for polarity control were established. In this work we develop a concept of polarity control in AlN and GaN layers grown by MOVPE on sapphire substrates. The polarity of the layers is studied by aberration corrected HRTEM and high resolution high-angle annular dark field (HAADF) scanning TEM. The analysis of the experimental investigations yields the following principal results: (i) mechanism that governs polarity selection; (ii) relation between sapphire surface nitridation and Al-polar domains in N-polar AlN films; (iii) possibility of controlled switching the layers polarity from N to Al by oxygen annealing.Understanding of this mechanism by which polarity is controlled opens up the possibilities for polarity engineering in nitride films and can give a clue to understanding polarity control in other material systems (e.g. oxides).
|
3 |
Transmission electron microscopy study of polarity control in III-N films grown on sapphire substratesStolyarchuk, Natalia 08 February 2018 (has links)
Die Polarität ist ein kritisches Thema für das III-Nitrid-Materialsystem, das sich auf die Qualität und Eigenschaften von epitaktischen Schichten, sowie auf die Leistungfähigkeit von auf Nitrid-Materialien basierenden Bauelementen auswirkt. Das Verständnis der elementaren Mechanismen, die für die Ausbildung von Metall- oder Stickstoffpolarität der Schichten bei Abscheidung auf unpolarem Substrat verantwortlich sind, fehlt jedoch. Die bestehenden Konzepte basieren auf empirischen Beobachtungen und sind teilweise widersprüchlich. Einer der Hauptgründe dafür ist der Mangel an präzisen Charakterisierungsmethoden, die eine lokale Bestimmung der Polarität und atomarer Struktur von Schichten erlauben, als die wesentlichen Konzepte der Polaritätskontrolle aufgestellt wurden.
In dieser Arbeit entwickeln wir ein Konzept der Polaritätskontrolle in AlN- und GaN-Schichten, welche mittels metallorganische Gasphasenepitaxie (MOVPE) auf Saphirsubstraten gewachsen sind. Die Polarität der Schichten wird mit Hilfe von aberrationskorrigierter Hochauflösungstransmissionselektronenmikroskopie und Z-Kontrastabbildung (Ordnungszahlkontrast) im Rastertransmissionselektronenmikroskop untersucht. Die Auswertung der experimentellen Untersuchungen ergibt Erkenntnisse bezüglich folgender Themen: (i) zum Mechanismus, der die Polaritätsauswahl steuert; (ii) zur Beziehung zwischen Saphir-Oberflächennitridierung und Al-polaren Domänen in ansonsten N-polaren AlN-Schichten; (iii) zur Möglichkeit des kontrollierten Wechsel von N- hin zu Al-polaren Schichten durch ein Sauerstofftempern.
Das Verständnis dieser Mechanismen, durch die die Polarität bestimmt wird, eröffnet die Möglichkeit der gezielten Manipulierung der Polarität und Polaritätsabfolge in Nitridschichten und kann einen Hinweis zum Verständnis der Polaritätskontrolle in anderen Materialsystemen (z. B. Oxiden) geben. / La polarité est une question critique pour le système de matériaux III-nitrures, qui a un impact sur la qualité des films épitaxies et la performance des dispositifs à base de nitrure. Mais la compréhension des mécanismes élémentaires responsables de l'établissement de la polarité N ou métallique des films sur le substrat non-polaire manque. Les concepts existants sont basés sur des observations empiriques et contiennent des résultats ambigus. Une des raisons principales est le manque d'outils analytiques, permettant la détermination localisée de la polarité et de la structure atomique des couches à l'époque, lorsque les concepts de contrôle de la polarité ont été établis.
Dans ce travail, nous développons un concept de contrôle de la polarité dans les couches AlN et GaN épitaxies sur substrat de saphir par EPVOM. La polarité des couches est étudiée par microscopie électronique en transmission (MET) haute résolution corrigée des aberrations et par microscope électronique à balayage en transmission en champ sombre (HAADF-STEM). L'analyse des investigations expérimentales donne les principaux résultats suivants : (i) le mécanisme qui régit la sélection de la polarité; (ii) la relation entre la nitruration de la surface et les domaines de polarité Al dans les films d'AlN N-polaire; (iii) possibilité d’inverser la polarité N de films d’AlN de polarité mixte en introduisant un recuit sous oxygène.
La compréhension de mécanisme par lequel la polarité est contrôlée ouvre les possibilités d'une ingénierie de polarité dans les films de nitrure et peut donner une idée de la compréhension du contrôle de la polarité dans d'autres systèmes de matériaux (par exemple, les oxydes). / Polarity is a critical issue for III-nitrides material system that has an impact on the quality and properties of epitaxial films and the performance of nitride-based devices. But the understanding of the elementary mechanisms that are responsible for establishing metal or nitrogen polarity of the films grown on nonpolar substrate is lacking. The existing concepts are based on empirical observations and contain ambiguous results. One of the main reasons for that is the lack of precise characterization tools, allowing localized determination of polarity and atomic structure of layers, at the time, when main concepts for polarity control were established.
In this work we develop a concept of polarity control in AlN and GaN layers grown by metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates. The polarity of the layers is studied by aberration corrected HRTEM and high resolution high-angle annular dark field (HAADF) scanning TEM. The analysis of the experimental investigations yields the following principal results about: (i) the mechanism that governs polarity selection; (ii) the relation between sapphire surface nitridation and Al-polar domains in N-polar AlN films; (iii) the possibility of controlled switching the layers polarity from N to Al by oxygen annealing.
The understanding of these mechanisms by which polarity is controlled opens up the possibility for polarity engineering in nitride films and can give a clue to understanding polarity control in other material systems (e.g. oxides).
|
Page generated in 0.3463 seconds