• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure et dynamique du plasma induit par laser en propagation dans un gaz ambiant d’argon / Structure and dynamics of laser-induced plasma in propagation in an argon ambient gas

Ma, Qianli 03 December 2012 (has links)
Ce travail de thèse a pour but d'étudier la structure et la dynamique du plasma induit par une impulsion laser nanoseconde d'éclairement d'une dizaine de GW cm-2, sur la surface d'une cible métallique plongée dans un gaz ambiant d'argon à pression atmosphérique. Comme source d'émission spectroscopique, un tel plasma constitue la base de l'approche laser-induced breakdown spectroscopy (LIBS), une technique d'analyse chimique en plein développement mais dont la maturation nécessite une compréhension approfondie des mécanismes mis en jeu dans la détente du plasma. Cependant la phase d'émission spectroscopique du plasma intéressante pour la technique LIBS n'occupe qu'un intervalle de temps limité dans la durée de vie de celui-ci, typiquement entre une centaine de nanosecondes et quelques microsecondes après l'impact de l'impulsion laser sur la cible. Au temps très courts, et notamment en présence de l'impulsion laser, la détente du plasma fait intervenir un grand nombre de processus physiques. Ces derniers sont largement partagés par des plasmas beaucoup plus énergétiques qui peuvent être soit produits artificiellement par des lasers hors norme, tels qu'un laser Mégajoule, soit présents dans des milieux difficilement accessibles, tels que le milieu interstellaire. L'étude du plasma à l'échelle du laboratoire peut donc fournir un système-modèle qui pourrait permettre des études fines et systématiques à moindre coût. Enfin, la phase de détente du plasma peut conduire à la formation de nanoparticules par recondensation ultrarapide. L'étude de la structure et la dynamique de la phase gazeuse facilitera ainsi la compréhension des mécanismes impliqués dans la condensation du plasma. Ce travail a été rendu possible avec l'utilisation des techniques de diagnostics reposant sur la spectroscopie d'émission et l'imagerie spectrale rapide du plasma. Cette approche expérimentale constitue aussi une des originalités de ce travail de thèse. Grâce à l'application de telles techniques, plutôt classiques, couplées avec un moyen de détection offrant une grande résolution temporelle et un montage expérimental à précision et à stabilité mécaniques extrêmement poussées, la structure d'un plasma a été révélée jusqu'à un degré de détail rarement atteint auparavant. La dynamique de la propagation du plasma dans un gaz ambiant a été ainsi étudiée en fonction du régime de l'onde d'absorption soutenue par laser. Un contrôle sur le régime de propagation a été notamment réalisé par ablations avec le fondamental et la troisième harmonique d'un laser Nd:YAG à 1064 nm et 355 nm / The purpose this PhD work is to study the structure and the dynamics of the plasma induced by a nanosecond laser pulse with irradiance in the range of 10 GW cm-2, on the surface of a metallic target surrounded by an ambient gas of argon at the atmospheric pressure. As a spectroscopic emission source, such plasma is the basis of laser-induced breakdown spectroscopy (LIBS), a rapidly developing analytical technique. The maturation of this technique requires today a deeper understanding of the mechanisms involved in the expansion of the plasma. However the spectroscopic emission phase of the plasma, interesting for LIBS, occupies only a limited time interval in the lifetime of the plume, typically between a few hundred nanoseconds and several microseconds after the impact of the laser pulse on the target. At very short delay, especially in the presence of the laser pulse, the plasma expansion involves physical processes which are often shared by plasmas with much higher energies which can be either artificially produced by unconventional lasers, such as a megajoule laser, or present in hostile environments such as interstellar media. The study of the plasma at the laboratory scale may therefore provide a model system that could allow detailed and systematic studies of the plasma with a modest cost. Finally, the condensation phase of the plasma could lead to the formation of nanoparticles. The study of the structure and the dynamics of the gas phase can facilitate the understanding of the mechanisms involved in the condensation of the plasma. This PhD thesis work has been made possible with the use of the diagnostics techniques based on emission spectroscopy and fast spectroscopic imaging of the plasma. Such experimental approach is also one of the originalities of this work. Thanks to the use of such techniques, rather classical in a general way, coupled with a detection providing high temporal resolution and an experimental setup with advanced mechanical precision and stability, the structure of the plasma has been revealed with a level of detail rarely achieved so far. The dynamics of the plasma during its expansion in an ambient gas has been thus studied as a function of the regime of the laser-supported absorption wave. A control of the propagation regime was achieved by ablations with the fundamental and the third harmonics of a Nd:YAG laser at 1064 nm and 355 nm respectively
2

Space and time characterization of laser-induced plasmas for applications in chemical analysis and thin film deposition / Caractérisation spatio-temporelle de plasmas induits par laser pour des applications à la chimie analytique et au dépôt de couches minces

Dawood, Mahmoud 12 1900 (has links)
Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz. / After decades of development, laser ablation has become an important technique for a large number of applications such as thin film deposition, nanoparticle synthesis, micromachining, chemical analysis, etc. Experimental and theoretical studies have been conducted to understand the physical mechanisms of the laser ablation processes and their dependence on the laser wavelength, pulse duration, ambient gas and target material. The present dissertation describes and investigates the relative importance of the physical mechanisms influencing the characteristics of aluminum laser-induced plasmas. The general scope of this research encompasses a thorough study of the interplay between the plasma plume dynamics and the ambient gas in which they expand. This is achieved by imaging and analyzing the temporal and spatial evolution the plume in terms of spectral intensity, electron density and excitation temperature within various environments extending from vacuum (10‾7 Torr) to atmospheric pressure (760 Torr), in an inert gas like Ar and He, as well as in a chemically active gas like N2. Our results show that the plasma emission intensity generally differs with the nature of the ambient gas and it is strongly affected by its pressure. In addition, for a given time delay after the laser pulse, both electron density and plasma temperature increase with the ambient gas pressure, which is attributed to plasma confinement. Moreover, the highest electron density is observed close to the target surface, where the laser is focused and it decreases by moving away (radially and axially) from this position. In contrast with the significant axial variation of plasma temperature, there is no large variation in the radial direction. Furthermore, argon was found to produce the highest plasma density and temperature, and helium the lowest, while nitrogen yields intermediate values. This is mainly due to their physical and chemical properties such as the mass, the excitation and ionization levels, the thermal conductivity and the chemical reactivity. The expansion of the plasma plume is studied by time- and space-resolved imaging. The results show that the ambient gas does not appreciably affect plume dynamics as long as the gas pressure remains below 20 Torr and the time delay below 200 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important and the shorter plasma plume length corresponds to the highest gas mass species and the lowest thermal conductivity. These results are confirmed by Time-Of-Flight (TOF) measurements of Al+ line emitted at 281.6 nm. Moreover, the velocity of aluminum ions is well defined at the earliest time and close to the target surface. However, at later times, the ions travel through the plume and become thermalized through collisions with plasma species and with surrounding ambient gas.

Page generated in 0.0417 seconds