• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 4
  • 1
  • Tagged with
  • 22
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and Optimization of Kinetic Target-Guided Synthesis Approaches Targeting Protein-Protein Interactions of the Bcl-2 Family

Kulkarni, Sameer Shamrao 01 January 2012 (has links)
Kinetic target-guided synthesis (TGS) and in situ click chemistry are among unconventional discovery strategies having the potential to streamline the development of protein-protein interaction modulators (PPIMs). In kinetic TGS and in situ click chemistry, the target is directly involved in the assembly of its own potent, bidentate ligand from a pool of reactive fragments. Herein, we report the use and validation of kinetic TGS based on the sulfo-click reaction between thio acids and sulfonyl azides as a screening and synthesis platform for the identification of high-quality PPIMs. Starting from a randomly designed library consisting of nine thio acids and nine sulfonyl azides leading to eighty one potential acylsulfonamides, the target protein, Bcl-XL selectively assembled four PPIMs, acylsulfonamides SZ4TA2, SZ7TA2, SZ9TA1, and SZ9TA5, which have been shown to modulate Bcl-XL/BH3 interactions. To further investigate the Bcl-XL templation effect, control experiments were carried out using two mutants of Bcl-XL. In one mutant, phenylalanine Phe131 and aspartic acid Asp133, which are critical for the BH3 domain binding, have been substituted by alanines, while arginine Arg139, a residue identified to play a crucial role in the binding of ABT-737, a BH3 mimetic, has been replaced by an alanine in the other mutant. Incubation of these mutants with the reactive fragments and subsequent LC/MS-SIM analysis confirmed that these building block combinations yield the corresponding acylsulfonamides at the BH3 binding site, the actual "hot spot" of Bcl-XL. These results validate kinetic TGS using the sulfo-click reaction as a valuable tool for the straightforward identification of high-quality PPIMs. Protein-protein interactions of the Bcl-2 family have been extensively investigated and the anti-apoptotic proteins (Bcl-2, Bcl-XL, and Mcl-1) have been validated as crucial targets for the discovery of potential anti-cancer agents. At the outset, Bcl-2 and Bcl-XL were considered to play an important role in the regulation of apoptosis. Accordingly, several small molecule inhibitors targeting Bcl-2 and/or Bcl-XL proteins were primarily designed. A series of acylsulfonamides targeting these proteins were reported by Abbott laboratories, ABT-737 and ABT-263 being the most potent candidates. Remarkably, these molecules were found to exhibit weaker binding affinities against Mcl-1, another anti-apoptotic protein. Further experimental evidence suggests that, inhibitors targeting Mcl-1 selectively or in combination with other anti-apoptotic proteins would lead to desired therapeutic effect. As a result, numerous small molecules displaying activity against Mcl-1 have been identified so far. Specifically, acylsulfonamides derived from structure activity relationship by interligand nuclear overhauser effect (SAR by ILOEs), a fragment-based approach, have been recently reported with binding affinities in the nanomolar range. In the meantime, we have reported that the kinetic TGS approach can also be applied to identify acylsulfonamides as PPIMs targeting Bcl-XL. Taken together, structurally novel acylsulfonamides can be potentially discovered as Mcl-1 inhibitors using the kinetic TGS approach. Thus, a library of thirty one sulfonyl azides and ten thio acids providing three hundred and ten potential products was screened against Mcl-1 and the kinetic TGS hits were identified. Subsequently, control experiments involving Bim BH3 peptide were conducted to confirm that the fragments are assembled at the binding site of the protein. The kinetic TGS hits were then synthesized and subjected to the fluorescence polarization assay. Gratifyingly, activities in single digit micromolar range were detected, demonstrating that the sulfo-click kinetic TGS approach can also be used for screening and identification of acylsulfonamides as PPIMs targeting Mcl-1. The amide bond serves as one of nature's most fundamental functional group and is observed in a large number of organic and biological molecules. Traditionally, the amide functionality is introduced in a molecule through coupling of an amine and an activated carboxylic acid. Recently, various alternative methods have been reported wherein, the aldehydes or alcohols are oxidized using transition metal catalysts and are treated with amines to transform into the corresponding amides. These transformations however, require specially designed catalysts, long reaction times and high temperatures. We herein describe a practical and efficient amidation reaction involving aromatic aldehydes and various azides under mild basic conditions. A broad spectrum of functional groups was tolerated, demonstrating the scope of the reaction. Consequently, the amides were synthesized in moderate to excellent yields, presenting an attractive alternative to the currently available synthetic methods.
12

Modificação química de amostras de poli(metacrilato de metila) comerciais com aminas funcionalizadas assistidas por micro-ondas / Chemical modification of commercial poly(methyl methacrylate) with functionalized amines assisted by microwave

Bianca da Rocha Mandarino 28 February 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho avaliou a reação de amidação sob catálise de DBU/NaCN de amostras comerciais de poli(metacrilato de metila), (PMMA), massa molar 60.000 u.m.a. com as aminas, alilamina, 2-morfolilaminoetano, 1-(3-aminopropil)-imidazol e N,N-dimetil-trimetilenodiamina com ativação por reator de micro-ondas. O estudo com alilamina e 2-morfolilaminoetano se mostrou eficaz, apresentando percentuais de derivatização significativos (27% e 37% , respectivamente). A quantidade de material polimérico obtido na purificação foi de cerca de 36 % para as duas aminas. O estudo evidenciou a importância dos catalisadores DBU/NaCN, pois sem eles a reação não ocorre e quando utilizados isoladamente, o grau de incorporação é muito menor. Já o estudo com as aminas 1-(3-aminopropil)-imidazol e N,N-dimetil-trimetilenodiamina mostrou-se ineficaz devido à dificuldade de purificação dos produtos. Tentativas de purificação por precipitação com metanol e soluções hidrometanólicas de diferentes concentrações mostraram-se ineficazes. Os novos PMMA modificados foram caracterizados por FT-IR, RMN-1H e análise elementar. Foram observadas alterações na taticidade do PMMA em reações ativadas por micro-ondas / This study evaluated the reaction of amidation under catalysis of DBU / NaCN of commercial samples of poly(methylmethacrylate) (PMMA) with a molecular weight 60,000 with the amines, allylamine, 2-morfollylaminoethane, 1-(3-aminopropyl)-imidazole and N,N-dimethyl-trimethylendiamine under microwave irradiation. The reaction allylamine and 2-morfolilaminoetano was observed with a significant percentage of derivatization. In addition, this study also showed the importance of the use of catalytic DBU / NaCN, without them the reaction does not occur and if used alone, the level of incorporation is much smaller. The study with amines 1-(3-aminopropyl)-imidazole and N, N-dimethyl-trimethylenediamine was inconclusive due to the difficulties in purifying the products. Attempts purification by precipitation with methanol and hidrometanólicas solutions of different concentrations have proven ineffective. The new modified PMMA were characterized by FT-IR, 1H-NMR and elemental analysis. There were changes on the tacticity in PMMA reactions activated by microwave
13

Modificação química de amostras de poli(metacrilato de metila) comerciais com aminas funcionalizadas assistidas por micro-ondas / Chemical modification of commercial poly(methyl methacrylate) with functionalized amines assisted by microwave

Bianca da Rocha Mandarino 28 February 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho avaliou a reação de amidação sob catálise de DBU/NaCN de amostras comerciais de poli(metacrilato de metila), (PMMA), massa molar 60.000 u.m.a. com as aminas, alilamina, 2-morfolilaminoetano, 1-(3-aminopropil)-imidazol e N,N-dimetil-trimetilenodiamina com ativação por reator de micro-ondas. O estudo com alilamina e 2-morfolilaminoetano se mostrou eficaz, apresentando percentuais de derivatização significativos (27% e 37% , respectivamente). A quantidade de material polimérico obtido na purificação foi de cerca de 36 % para as duas aminas. O estudo evidenciou a importância dos catalisadores DBU/NaCN, pois sem eles a reação não ocorre e quando utilizados isoladamente, o grau de incorporação é muito menor. Já o estudo com as aminas 1-(3-aminopropil)-imidazol e N,N-dimetil-trimetilenodiamina mostrou-se ineficaz devido à dificuldade de purificação dos produtos. Tentativas de purificação por precipitação com metanol e soluções hidrometanólicas de diferentes concentrações mostraram-se ineficazes. Os novos PMMA modificados foram caracterizados por FT-IR, RMN-1H e análise elementar. Foram observadas alterações na taticidade do PMMA em reações ativadas por micro-ondas / This study evaluated the reaction of amidation under catalysis of DBU / NaCN of commercial samples of poly(methylmethacrylate) (PMMA) with a molecular weight 60,000 with the amines, allylamine, 2-morfollylaminoethane, 1-(3-aminopropyl)-imidazole and N,N-dimethyl-trimethylendiamine under microwave irradiation. The reaction allylamine and 2-morfolilaminoetano was observed with a significant percentage of derivatization. In addition, this study also showed the importance of the use of catalytic DBU / NaCN, without them the reaction does not occur and if used alone, the level of incorporation is much smaller. The study with amines 1-(3-aminopropyl)-imidazole and N, N-dimethyl-trimethylenediamine was inconclusive due to the difficulties in purifying the products. Attempts purification by precipitation with methanol and hidrometanólicas solutions of different concentrations have proven ineffective. The new modified PMMA were characterized by FT-IR, 1H-NMR and elemental analysis. There were changes on the tacticity in PMMA reactions activated by microwave
14

Sultam Synthesis Via Intramolecular C-H Amination of Hydroxylamines

Quartus, Jasper Adam May 22 November 2021 (has links)
Nitrogen is a vital element for the existence of life, as shown by its frequent presence in essential biomolecules, and inclusion into valuable drugs. Sulfonamides and their heterocycle counterpart, sultams, are N-containing functional groups and metabolically stable amide isosteres. Sulfa drugs, which contain these moieties, have a broad spectrum of medical applications. The industrial value of sultams has prompted the development of novel methods for their synthesis, and metal-catalyzed C-H amination reactions with nitrene precursors have recently shown promise. The current thesis presents a survey of conditions for benzo[d]sultam synthesis via intramolecular C-H amination of N-acyloxysulfonamides. Initially, using Ru(Bpy)3(PF6)2 as a photocatalyst and Et3N as a base enabled benzo[d]sultam formation by tertiary C-H amidation. The photoredox conditions were optimized to accommodate other 2,6-disubstituted-N-acyloxysulfonamides upon omission of the base, which consistently gave sulfonamide byproducts. Control reactions indicated that a thermal base-induced reaction was simultaneously occurring, both enabling productive C-H amidation and byproduct formation. Systematic optimization of base-induced conditions enabled sultam synthesis from 2,6-dialkyl- and tertiary ortho-monoalkyl-precursors in moderate yield, but sulfonamide formation still impeded the reaction.   An additional control reaction indicated that a thermal Ruthenium-catalyzed C-H amidation reaction was possible. Indeed, heating N-acyloxysulfonamides in the presence of Ru(Bpy)3(PF6)2 and in the absence of light and base enabled efficient C-H amidation, particularly with DCE as a solvent. A representative scope of 12 benzo[d]sultams was then synthesized including entries derived from ortho-monoalkyl-N-acyloxyarylsulfonamides. Aside from optimizing an efficient reaction for the synthesis of benzo[d]sultams through the cyclization of N-acyloxyarylsulfonamides, including the challenging primary C-H amidation of orthomonomethyl-substrates, the unique reaction conditions developed in this thesis set precedent for future investigation of hydroxylamine derived nitrene precursors. The optimization and design of superior ruthenium catalysts could allow for more challenging C-H amination reactions with hydroxysulfonamide derivatives and similar N-oxy nitrene precursors.
15

A Characterization of the Effects of Polychlorinated Biphenyl Mixtures on the Expression of Peptidylglycine Alpha-Amidating Monooxygenase in Neuroendocrine Cells

Frederick, Karen 28 June 2006 (has links)
No description available.
16

TEMPO-oxidized Nanocelluloses: Surface Modification and use as Additives in Cellulosic Nanocomposites

Johnson, Richard Kwesi 01 December 2010 (has links)
The process of TEMPO-mediated oxidation has gained broad usage towards the preparation of highly charged, carboxyl-functionalized polysaccharides. TEMPO-oxidized nanocelluloses (TONc) of high surface charge and measuring 3 to 5 nm in width have been recently prepared from TEMPO-oxidized pulp. This study examines as-produced and surface-hydrophobized TONc as reinforcing additives in cellulosic polymer matrices. In the first part of the work, covalent (amidation) and non-covalent (ionic complexation) coupling were compared as treatment techniques for the hydrophobization of TONc surfaces with octadecylamine (ODA). Subsequently, TONc and its covalently coupled derivative were evaluated as nanofiber reinforcements in a cellulose acetate butyrate (CAB) matrix. The properties of the resulting nanocomposites were compared with those of similarly prepared ones reinforced with conventional microfibrillated cellulose (MFC). It was found that both ionic complexation and amidation resulted in complete conversion of carboxylate groups on TONc surfaces. As a result of surface modification, the net crystallinity of TONc was lowered by 15 to 25% but its thermal decomposition properties were not significantly altered. With respect to nanocomposite performance, the maximum TONc reinforcement of 5 vol % produced negligible changes to the optical transmittance behavior and a 22-fold increase in tensile storage modulus in the glass transition region of CAB. In contrast, hydrophobized TONc and MFC deteriorated the optical transmittance of CAB by ca 20% and increased its tensile storage modulus in the glass transition region by only 3.5 and 7 times respectively. These differences in nanocomposite properties were attributed to homogeneous dispersion of TONc compared to aggregation of both the hydrophobized derivative and the MFC reference in CAB matrix. A related study comparing TONc with MFC and cellulose nanocrystals (CNC) as reinforcements in hydroxypropylcellulose (HPC), showed TONc reinforcements as producing the most significant changes to HPC properties. The results of dynamic mechanical analysis and creep compliance measurements could be interpreted based on similar arguments as those made for the CAB-based nanocomposites. Overall, this work revealed that the use of TONc (without the need for surface hydrophobization) as additives in cellulosic polymer matrices leads to superior reinforcing capacity and preservation of matrix transparency compared to the use of conventional nanocelluloses. / Ph. D.
17

Étude de la réactivité polyvalente des composés borés : de la fluoration électrophile à la synthèse d’amides par substitution nucléophile oxydante ; O-alkylation de dérivés phénoliques par substitution nucléophile : vers la mise au point d’un système éco-compatible / Versatile alkyl boronic reactivity : electrophilic fluorination and oxidative nucleophilic substitution for amide synthesis; O-Alkylation of phenols derivatives via a nucleophilic substitution

Cazorla, Clément 19 September 2011 (has links)
Ce travail a tout d’abord porté sur la réactivité des dérivés borés puis sur la réaction de O-alkylation des alcools aromatiques. L’utilisation des composés borés est en plein essor. Ils sont employés comme partenaires de couplage dans la réaction de Suzuki et les réactions d’additions [1,4] catalysées au rhodium pour la synthèse de molécules à hautes valeurs ajoutées. La polarisation de la liaison C-B induit le caractère nucléophile de ces composés. Cette réactivité a été exploitée pour la formation de liaisons C-F par fluoration électrophile. L’utilisation de Selectfluor® comme agent de fluoration aboutit à de bons rendements. Toutefois, la nucléophilie des composés alkylborés peut être inversée par substitution nucléophile oxydante. Ainsi, une méthode créant des liaisons C-N a pu être développée et a permis la synthèse d’amides à partir de nitriles et de sels de trifluoroborates de potassium en présence de Cu(OAc)2 et BF3.OEt2. En vue de l’importance de la chimie des éthers en synthèse organique, une méthode de préparation d’éthers aryliques a été développée au laboratoire. En partant d’un système stœchiométrique en trifluorure de bore, un système catalytique impliquant du triflate de cérium a été mis au point. Afin de répondre au mieux au concept de la chimie verte, un système catalytique hétérogène, sans solvant, a été décrit. Dans ce cas, le catalyseur employé est le Nafion® NR50, facilement recyclable, sans perte d’activité, et conduisant à de bons rendements avec les alcools aliphatiques et aromatiques. Des amines aromatiques secondaires peuvent également être préparées par cette méthode / This thesis describes the study of the reactivity of boron compounds and the O-alkylation of aromatic alcohols. The use of boronic derivatives increased considerably over the past decades. There are used as cross-coupling partners in the Suzuki reaction and for 1,4 rhodium-catalyzed addition reaction. The nucleophilic nature of these compounds was induced by the C-B bond polarization. This peculiar reactivity was studied for the C-F bond formation. The use of Selectfluor® as fluorinating agent leads to good yields. Nevertheless, the polarity of the C-B bond could be reversed by oxidative nucleophilic substitution. Thus, C–N bond could be formed from nitriles and potassium trifluoroborate salts promoted by Cu(OAc)2 in the presence of BF3.OEt2. Due to the importance of ether chemistry in organic synthesis, the O-alkylation of phenol derivatives was achieved in the laboratory. From a stoichiometric amount of Lewis acid, BF3.OEt2, a catalytic system was developed involving cerium triflate. Then, the focus on green chemistry led to use a heterogeneous catalyst. Where Nafion® NR50 appears as a suitable catalyst for the ether synthesis
18

Étude de la réactivité polyvalente des composés borés : de la fluoration électrophile à la synthèse d'amides par substitution nucléophile oxydante ; O-alkylation de dérivés phénoliques par substitution nucléophile : vers la mise au point d'un système éco-compatible

Cazorla, Clément 19 September 2011 (has links) (PDF)
Ce travail a tout d'abord porté sur la réactivité des dérivés borés puis sur la réaction de O-alkylation des alcools aromatiques. L'utilisation des composés borés est en plein essor. Ils sont employés comme partenaires de couplage dans la réaction de Suzuki et les réactions d'additions [1,4] catalysées au rhodium pour la synthèse de molécules à hautes valeurs ajoutées. La polarisation de la liaison C-B induit le caractère nucléophile de ces composés. Cette réactivité a été exploitée pour la formation de liaisons C-F par fluoration électrophile. L'utilisation de Selectfluor® comme agent de fluoration aboutit à de bons rendements. Toutefois, la nucléophilie des composés alkylborés peut être inversée par substitution nucléophile oxydante. Ainsi, une méthode créant des liaisons C-N a pu être développée et a permis la synthèse d'amides à partir de nitriles et de sels de trifluoroborates de potassium en présence de Cu(OAc)2 et BF3.OEt2. En vue de l'importance de la chimie des éthers en synthèse organique, une méthode de préparation d'éthers aryliques a été développée au laboratoire. En partant d'un système stœchiométrique en trifluorure de bore, un système catalytique impliquant du triflate de cérium a été mis au point. Afin de répondre au mieux au concept de la chimie verte, un système catalytique hétérogène, sans solvant, a été décrit. Dans ce cas, le catalyseur employé est le Nafion® NR50, facilement recyclable, sans perte d'activité, et conduisant à de bons rendements avec les alcools aliphatiques et aromatiques. Des amines aromatiques secondaires peuvent également être préparées par cette méthode
19

Amine-Boranes: Synthesis and Applications

Henry J Hamann (10730742) 30 April 2021 (has links)
Reported herein is a brief summary of the history, properties, and applications of amine-boranes. The past methods devised for their preparation are described and the routes used to produce the compounds used in the work presented here are detailed. Building on prior synthetic approaches to amine-boranes, a new carbon dioxide mediated synthesis is presented. Proceeding through a monoacyloxyborane intermediate, the borane complexes of ammonia, primary, secondary, tertiary, and heteroaromatic amine are provided in 53-99% yields. Utilizing the amine-boranes obtained from the methods described, two divergent methods for direct amidation are introduced. The first uses amine-boranes as dual-purpose reagents, where the carboxylic acid is first activated by the borane moiety to form a triacyloxyborane-amine complex. This allows the delivery of the coordinated amine to form the amide products. A series of primary, secondary, and tertiary amides were prepared in 55-99% yields using this protocol, which displays a broad functional group tolerance. Extended from this dual-purpose methodology, a catalytic amidation is described. Utilizing ammonia-borane as a substoichiometric (10%) catalyst, a series of secondary and tertiary amide are prepared directly from carboxylic acids and amines in 59-99% yields, including amines containing typically borane reactive functionalities including alcohols, thiols, and alkenes. Amine-boranes are additionally used in two borylation methodologies. By reaction with <i>n</i>-butyl lithium, the amine-boranes are converted to the corresponding lithium aminoborohydrides, which upon reaction with a terminal alkyne provides the alkynyl borane-amine complexes in 65-98% yields. This process is compatible with both alkenes and internal alkynes, as well as a range of aprotic functionalities. A new strategy for aminoborane synthesis is also described and applied to the borylation of haloarenes. Activation of a series of amine-boranes with iodine produces the iodinated amine-borane, which undergoes dehydrohalogenation with an appropriate base to produce either monomeric or dimeric aminoboranes. Several aminoboranes were synthesized exclusively as the monomeric species, which due to their greater reactivity, were used directly in the synthesis of a series of aryl boronates in 65-99% yields.
20

Selectivity Control in 3d Transition Metal-Catalyzed C–H Activation

Loup, Joachim 16 August 2019 (has links)
No description available.

Page generated in 0.0967 seconds