Spelling suggestions: "subject:"amino acids, 5peptides, anda 2proteins"" "subject:"amino acids, 5peptides, anda 1proteins""
341 |
The Role of Rip2 Protein in the Nod Mediated Innate Immune Response: A DissertationYang, Yibin 16 April 2010 (has links)
The Rip2 kinase contains a caspase recruitment domain (CARD) and has been implicated in the activation of the transcriptional factor NF-кB downstream of Nod-like receptors. However, how Rip2 mediates innate immune responses is still largely unclear. We show that Rip2 and IKK-γ become stably polyubiquitinated upon treatment of cells with the Nod2 ligand, muramyl dipeptide. We demonstrate a requirement for the E2 conjugating enzyme Ubc13, the E3 ubiquitin ligase Traf6 and the ubiquitin activated kinase Tak1 in Nod2-mediated NF-кB activation. We also show that M. tuberculosisinfection stimulates Rip2 polyubiquitination. Collectively, this study revealed that the Nod2 pathway is ubiquitin regulated and that Rip2 employs a ubiquitin-dependent mechanism to achieve NF-кB activation.
We also demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway. We show that upon Mtb infection, Nod2 recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depends entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to Mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system.
|
342 |
Endocytosis, Phagocytosis, and Innate Immune Responses: A DissertationSt. Pierre, Christine A. 13 July 2010 (has links)
In this dissertation, the roles of endocytosis and phagocytosis pathways in a variety of clinically relevant scenarios were examined. These scenarios include antibody-mediated internalization of cell surface proteins, titanium wear-particle uptake in failed joint replacements, and polymeric microparticle uptake and immune responses for drug delivery or adjuvant use.
The use of antibodies specific for cell surface proteins has become a popular method to deliver therapeutics to target cells. As such, it is imperative to fully understand the ability of antibodies to mediate internalization and endosomal trafficking of the surface protein that it recognizes, so that drug delivery can be optimized. By comparing the internalization and endosomal localization of two different antibody-bound proteins, the transferrin receptor (TfR) and rabies G, we have found that there is a specific antibody-mediated internalization pathway that occurs when an antibody binds to a cell surface protein. Interestingly, the internalization pathway induced by antibody binding is different than that seen with recycling receptor internalization after ligand binding. This may have broad implications for the future development of antibody-based therapeutics.
Joint replacement failure is a major clinical problem. Studies have indicated that a large amount of metal and polyethylene wear debris is found in the synovial membrane and tissue surrounding failed replacements. Through examination of the immune response following uptake of titanium particles, our results suggest that titanium wear-particle induced inflammation and subsequent joint replacement failure may be due to activation of the NLRP3 inflammasome, leading to increased IL-1ß secretion and IL-1 associated signaling. These findings introduce IL-1 as a target for potential therapeutics for patients exhibiting significant inflammation.
Polymeric microparticles have been widely used in a variety of therapeutic applications, including drug delivery and vaccine adjuvants. It is essential to understand the ability of such particles to either activate or inhibit an immune response following uptake. Through comparison of particles with varying surface morphology, we have determined that particles with regions of high surface curvature (budding) are more immunogenic than particles with low surface curvature (spherical). Budding particles were more rapidly phagocytosed and induced higher levels of the inflammasome-associated cytokine, IL-1ß, when exposed to mouse macrophages. Additionally, budding particles induced a more rapid neutrophil response in vivo, when compared to spherical particles. These findings have broad implications for the development of future targeting vehicles for delivery of vaccines, drugs, proteins, and siRNA therapeutics.
|
343 |
Inflammation Inhibits Osteoblast-Mediated Bone Formation in Rheumatoid Arthritis and Regulates the Wnt and BMP Signaling Pathways: A DissertationMatzelle, Melissa M. 17 May 2012 (has links)
Osteoclast-mediated focal articular bone erosion is a hallmark of rheumatoid arthritis, a disease of inflammation-induced bone loss. Inflammation in the bone microenvironment enhances osteoclast differentiation leading to bone erosion. Simultaneously, inflammation also inhibits osteoblast-mediated bone formation, further contributing to the net loss of bone. Previous studies have shown a paucity of mature osteoblasts at eroded bone surfaces correlating with suppression of bone formation and upregulation of antagonists of the Wnt pathway, a signaling cascade essential for osteoblast lineage commitment. Despite these observations, the exact pathogenesis of impaired bone formation in the setting of inflammation is not clearly understood.
This dissertation aims to delineate the mechanisms by which inflammation suppresses osteoblast differentiation and activity in inflammatory arthritis. Specifically, this research elucidates how inflammation-induced alterations in the Wnt and bone morphogenetic protein (BMP) osteogenic signaling pathways contribute to bone loss and formation at distinct inflammatory microenvironments within the bone. Secondly, the means by which cellular mediators, including lymphocytes and macrophages, facilitate bone erosion and formation was addressed.
Taken together, the research in this dissertation underscores the relationship between inflammation-induced bone loss and alterations in osteogenic signaling. Using an innovative murine inflammatory arthritis model, this study definitively demonstrates that resolving inflammation promotes osteoblast-mediated bone formation. Repair of erosions correlates with upregulation of synovial expression of Wnt10b, a Wnt agonist, and downregulation of sFRP1 and sFRP2, Wnt antagonists. This work also directly evaluates the contribution of sFRP1 to inflammation-induced bone destruction. Furthermore, this research demonstrates that expression of BMP3, a negative regulator of BMP signaling, is upregulated in osteoblasts by IL-17, a pro-inflammatory cytokine. BMP3-expressing osteoblasts are also observed at erosion sites in murine arthritis. Lastly, evaluation of the mediators of inflammation-induced periosteal bone formation implicates BMP2 as a means by which inflammation may positively regulate osteoblast function.
This dissertation further elucidates the role of T cells and macrophages in the erosion and formation processes, respectively. In the absence of lymphocytes, bone erosion occurred normally, demonstrating that RANKL-expressing lymphocytes are not absolutely required for the bone erosion. Preliminary studies also suggest that M2 macrophages are potential mediators of bone formation via the expression of BMP2.
In conclusion, this dissertation explores the ability of inflammation to act as a rheostat, which controls the fate of bone by modulating not only osteoclast differentiation, but also osteogenic signaling pathways and cellular mediators in the bone microenvironment. The soluble mediators and cell types identified in this research highlight novel mechanisms by which inflammation may regulate osteoblast activity within the bone microenvironment. Collectively, these data imply that strict control of inflammation may be necessary in order to create an anabolic environment that preserves bone architecture in diseases of inflammation-induced bone loss.
|
344 |
Dissecting Small RNA Loading Pathway in <em>Drosophila melanogaster</em>: A DissertationDu, Tingting 28 January 2008 (has links)
In the preceding chapters, I have discussed my doctoral research on studying the siRNA loading pathway in Drosophila using both biochemical and genetic approaches. We established a gel shift system to identify the intermediate complexes formed during siRNA loading. We detected at least three complexes, named complex B, RISC loading complex (RLC) and RISC. Using kinetic modeling, we determined that the siRNA enters complex B and RLC early during assembly when it remains double-stranded, and then matures in RISC to generate Argonaute bearing only the single-stranded guide. We further characterized the three complexes. We showed that complex B comprises Dcr-1 and Loqs, while both RLC and RISC contain Dcr-2 and R2D2. Our study suggests that the Dcr-2/R2D2 heterodimer plays a central role in RISC assembly. We observed that Dcr-1/Loqs, which function together to process pre-miRNA into mature miRNA, were also involved in siRNA loading. This was surprising, because it has been proposed that the RNAi pathway and miRNA pathway are separate and parallel, with each using a unique set of proteins to produce small RNAs, to assemble functional RNA-guided enzyme complexes, and to regulate target mRNAs. We further examined the molecular function of Dcr-1/Loqs in RNAi pathway. Our data suggest that, in vivo and in vitro, the Dcr-1/Loqs complex binds to siRNA. In vitro, the binding of the Dcr-1/Loqs complex to siRNA is the earliest detectable step in siRNA-triggered Ago2-RISC assembly. Futhermore, the binding of Dcr-1/Loqs to siRNA appears to facilitate dsRNA dicing by Dcr-2/R2D2, because the dicing activity is much lower in loqslysate than in wild type.
Long inverted repeat (IR) triggered white silencing in fly eyes is an example of endogenous RNAi. Consistent with our finding that Dcr-1/Loqs function to load siRNA, less white siRNA accumulates in loqs mutant eyes compared to wild type. As a result, loqs mutants are partially defective in IR trigged whitesilencing. Our data suggest considerable functional and genetic overlap between the miRNA and siRNA pathways, with the two sharing key components previously thought to be confined to just one of the two pathways.
Based on our study on siRNA loading pathway, we also elucidated the molecular function of Armitage (Armi) protein in RNAi. We showed that armi is required for RNAi. Lysates from armi mutant ovaries are defective for RNAi in vitro. Native gel analysis of protein-siRNA complexes suggests that armi mutants support early steps in the RNAi pathway, i.e., the formation of complex B and RLC, but are defective in the production of the RISC.
|
345 |
Adipocyte Insulin-Mediated Glucose Transport: The Role of Myosin 1c, and a Method for <em>in vivo</em> Investigation: A DissertationHagan, G. Nana 17 December 2008 (has links)
The importance of insulin delivery and action is best characterized in Type 2 Diabetes, a disease that is becoming a pandemic both nationally and globally. Obesity is a principal risk factor for Type 2 Diabetes, and adipocyte function abnormalities due to adipose hypertrophy and hyperplasia, have been linked to obesity. Numerous reports suggest that the intracellular and systemic consequences of adipocyte function abnormalities include adipocyte insulin resistance, enhanced production of free fatty acids, and production of inflammatory mediators. A hallmark of adipocyte insulin sensitivity is the stimulation of glucose transporter isoform 4 (GLUT4) trafficking events to promote glucose uptake. In the Type 2 diabetic and insulin resistant states the mechanism behind insulin-stimulated GLUT4 trafficking is compromised. Therefore, understanding the role of factors involved in glucose-uptake in adipose tissue is of great importance.
Studies from our laboratory suggest an important role for the unconventional myosin, Myo1c, in promoting insulin-mediated glucose uptake in cultured adipocytes. Our observations suggest that depletion of Myo1c in cultured adipocytes results in a significant reduction in the ability of adipocytes to take up glucose following insulin treatment, suggesting Myo1c is required for insulin-mediated glucose uptake. A plausible mechanism by which Myo1c promotes glucose uptake in adipocytes has been suggested by further work from our laboratory in which expression of fluorescently-tagged Myo1c in cultured adipocytes induces significant membrane ruffling at the cell periphery, insulin-independent GLUT4 translocation to the cell periphery, and accumulation of GLUT4 in membrane ruffling regions. Taken together Myo1c seems to facilitate glucose uptake through remodeling of cortical actin.
In the first part of this thesis I, in collaboration with others, uncovered a possible mechanism through which Myo1c regulates adipocyte membrane ruffling. Here we identified a novel protein complex in cultured adipocytes, comprising Myo1c and the mTOR binding partner, Rictor. Interestingly our studies in cultured adipocytes suggest that the Rictor-Myo1c complex is biochemically distinct from the Rictor-mTOR complex of mTORC2. Functionally, only depletion of Rictor but not Myo1c results in decreased Akt phosphorylation at serine 473, but depletion of either Rictor or Myo1c results in compromised cortical actin dynamic events. Furthermore we observed that whereas the overexpression of Myo1c in cultured adipocytes causes remarkable membrane ruffling, Rictor depletion in cells overexpressing Myo1c significantly reduces these ruffling events. Taken together our findings suggest that Myo1c, in conjunction with Rictor, modulates cortical actin remodeling events in cultured adipocytes. These findings have implications for GLUT4 trafficking as GLUT4 has been previously observed to accumulate in Myo1c-induced membrane ruffles prior to fusion with the plasma membrane.
During our studies of adipocyte function we noticed that current siRNA electroporation methods present numerous limitations. To silence genes more effectively we employed a lentivirus-mediated shRNA delivery system, and to standardize this technology in cultured adipocytes we targeted Myo1c and MAP4K4. Using this technology we were able to achieve clear advantages over siRNA oligonucleotide electroporation techniques in stability and permanence of gene silencing. Furthermore we showed that the use of lentiviral vectors in cultured adipocytes did not affect insulin signaling or insulin-mediated glucose uptake events. Despite our inability to use lentiviral vectors to achieve gene silencing in mice we were able to achieve adipose tissue-specific gene silencing effects in mice following manipulation of the lentiviral conditional silencing vector, and then crossing resulting founders with aP2-Cre mice. Interestingly however, only founders from the MAP4K4 conditional shRNA vector, but not founders from the Myo1c conditional shRNA vector, showed gene knockdown, possibly due to position-effect variegation. Taken together, findings from these studies are important because they present an alternative means of achieving gene silencing in cultured adipocytes, with numerous advantages not offered by siRNA oligonucleotide electroporation methods. Furthermore, the in vivo, adipose tissue-specific RNAi studies offer a quick, inexpensive, and less technically challenging means of achieving adipose tissue-specific gene ablations relative to traditional gene knockout approaches.
|
346 |
Role of Supervillin, a Membrane Raft Protein, in Cytoskeletal Organization and Invadopodia FunctionCrowley, Jessica Lynn 12 February 2009 (has links)
Crucial to a cell’s ability to migrate is the organization of its plasma membrane and associated proteins in a polarized manner to interact with and respond to its surrounding environment. Cells interact with the extracellular matrix (ECM) through specialized contact sites, including podosomes and invadopodia. Tumor cells use F-actin-rich invadopodia to degrade ECM and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction and degradation. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II,reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV increases the number of F-actin punctae, which are highly dynamic and co-localize with markers of podosomes and invadopodia. Endogenous SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases the average amount of matrix degradation; RNAi-mediated downregulation of SV decreases degradation. Cortactin, an essential component of both podosomes and invadopodia, binds SV sequences in vitro and contributes to the formation of EGFP-SV induced punctae. Additionally, SV affects cortactin localization,which could provide a mechanism for SV action at invadopodia.
The formation of cholesterol-rich membrane rafts is one method of plasma membrane organization. A property of membrane rafts is resistance to extraction with cold Triton X-100 and subsequent flotation to low buoyant densities. The actin cytoskeleton has been implicated in many signaling events localized to membrane rafts, but interactions between actin and raft components are not well characterized. Our laboratory isolated a heavy detergent resistant membrane fraction from neutrophils, called DRM-H, that contains at least 23 plasma membrane proteins. DRM-H is rich in cytoskeletal proteins, including fodrin, actin, myosin II, as well as supervillin. DRM-H also contains proteins implicated in both raft organization and membrane-mediated signaling. DRM-H complexes exhibit a higher buoyant density than do most DRMs (referred to as DRM-L), which are deficient in cytoskeletal proteins. By using similar purification methods, I find that COS-7 cells also contain cytoskeleton-associated DRMs. In addition, when transfected into COS-7 cells, estrogen receptor (ER)α associates with DRM-H, while ERβ is seen in both DRM-L and DRM-H populations, suggesting a role for DRM-H in nongenomic estrogen signaling. Thus, the cytoskeleton-associated DRM-H not limited to hematopoietic cells and could constitute a scaffold for membrane raftcytoskeleton signaling events in many cells.
Taken together, our results show that SV is a component of cytoskeleton-associated membrane rafts as well as podosomes and invadopodia, and that SV plays a role in invadopodial function. SV, with its connections to both membrane rafts and the cytoskeleton, is well situated to mediate cortactin localization, activation state, and/or dynamics of matrix metalloproteases at the ventral cell surface for proper matrix degradation through invadopodia. The molecular dissection of invadopodia formation and function may contribute to a greater understanding of in vivo invasion, and thus, tumor cell metastasis.
|
347 |
T Cells Aid in Limiting Pathogen Burden and in Enhancing B1 and B2 Cell Antibody Responses to Membrane Glycolipid and the Surface Lipoprotein Decorin-Binding Protein A during Borrelia burgdorferi Infection: A DissertationMarty-Roix, Robyn Lynn 15 June 2010 (has links)
Murine infection by the Lyme disease spirochete, B. burgdorferi, results in the generation of pathogen-specific antibody that can provide protection against Lyme disease, but the cells involved in this response are poorly characterized. T cells are not required for generating a protective antibody response to B. burgdorferi infection, but their exact role in providing protection against tissue colonization had not been previously determined. We found that TCRβxδ;-/- mice were susceptible to high pathogen loads and decreased antibody titers, but inhibition of CD40L-dependent interactions resulted in partial protection suggesting that a portion of the help provided by T cells was not dependent on CD40L-CD40 interactions between T and B cells. RAG1-/- mice reconstituted with either un-fractionated or B1-enriched peritoneal cells from previously infected mice generated B. burgdorferi-specific antibody, and upon spirochetal challenge suffered significantly lower levels of pathogen load in the joint and heart. Peritoneal cells from previously infected TCRβxδ-/- mice or B2-enriched or B1-purified peritoneal cells conferred little to only moderate protection, suggesting T cells play an important role in protection against spirochetal infection the joint. Consistent with this, T cells from previously infected donor mice, when transferred with B1 or B2 cells into RAG1-/- mice, generated increased antibody titers and were capable of diminishing bacterial burden in the joint and heart. A previously identified class of protective antibody is directed against the spirochetal surface lipoprotein DbpA, and we found that DbpA is a prominent protein antigen recognized by RAG1-/- mice reconstituted with B1-enriched peritoneal cells. Additionally, we found that mice reconstituted with B1 cells also make antibody directed towards the spirochetal glycolipid antigen, BbGL-IIc, which is recognized by Vα14iNKT cells. Consistent with the idea that T cells are important in providing protection against spirochetal infection, RAG1-/- mice reconstituted with B1 and T cells generated a more robust response against DbpA and BbGL-IIc. These results support the hypothesis that T cells act with B1 cells in a CD40L-independent manner to promote the production of antibodies that play an important role in protection of the joint from spirochetal infection.
|
348 |
Mitochondrial Dysfunction and AKT Isoform-Specific Regulation in 3T3-L1 Adipocytes: A DissertationShi, Xiarong 09 September 2010 (has links)
Excess food consumption and/or lack of exercise have dramatically contributed to the prevalence of overweight (BMI≥25) and obesity (BMI≥30) in modern society. The obesity epidemic has been linked to the rise in type 2 diabetes. In recent years, evidence has pointed to a close association between mitochondrial dysfunction in white adipose tissue (WAT) and insulin resistance, a key feature of type 2 diabetes. In order to dissect the cause and effect relationship between WAT mitochondrial dysfunction and insulin resistance, we established an in vitro cell line system to investigate this issue. We artificially introduced mitochondrial dysfunction in 3T3-L1 adipocytes by depleting the mitochondrial transcription factor A (Tfam) during adipogenesis, without changing the overall adipocyte differentiation program. We found that these Tfam-depleted 3T3-L1 adipocytes showed symptoms of insulin resistance, evidenced by impaired insulin stimulated GLUT4 translocation and glucose uptake. This result suggested that mitochondrial dysfunction could be a primary contributor to insulin resistance in fat tissue. However, the exact mechanism underlying this finding remains unclear.
As part of a comprehensive understanding of insulin signaling in fat cells, we also investigated the involvement of the endosomal protein WDFY2 in the regulation of Akt isoform-specific effect on glucose uptake. In 3T3-L1 adipocytes, both Akt1 and Akt2 isoforms are expressed, but only Akt2 plays an indispensible role in insulin-stimulated GLUT4 translocation and glucose uptake. Previous studies implied that endosomal proteins may take a part in determining Akt substrate specificity. Here we found that WDFY2 preferentially co-localized with Akt2 and that knockdown of WDFY2 inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes, suggesting that endosomes are involved in this regulation. The effect of WDFY2 knockdown on insulin-stimulated glucose uptake worked through the down-regulation of Akt2, but not Akt1, protein level. We concluded that, endosomal protein WDFY2, by preferentially interacting with Akt2, regulates insulin signaling in glucose uptake in 3T3-L1 adipocytes. Our findings may help to develop specific therapeutic interventions for treatment of insulin resistance and type 2 diabetes.
|
349 |
The Coupling Between Folding, Zinc Binding, and Disulfide Bond Status of Human Cu, Zn Superoxide Dismutase: A DissertationKayatekin, Can 15 June 2010 (has links)
Cu, Zn superoxide dismutase (SOD1) is a dimeric, β-sandwich, metalloenzyme responsible for the dismutation of superoxide. Mutations covering nearly 50% of the amino acid sequence of SOD1 have been found to acquire a toxic gain-of-function leading to amyotrophic lateral sclerosis. A hallmark of this disease is the presence of insoluble aggregates containing SOD1 found in the brain and spinal cord. While it is unclear how these aggregates or smaller, precursor oligomeric species may be the source of the toxicity, mutations leading to increased populations of unstable, partially folded species along the folding pathway of SOD1 may be responsible for seeding and propagating aggregation.
In an effort to determine the responsible species, we have systematically characterized the stability and folding kinetics of five well studied ALS variants: A4V, L38V, G93A, L106V and S134N. The effect of the amino acid substitutions was determined on a variety of different constructs characterizing the various post-translational maturation steps of SOD1: folding, disulfide bond formation and Zn binding. Zn was found to bind progressively tighter along the folding pathway of SOD1, minimizing populations of monomeric species. In contrast, ALS variants were found to have the greatest perturbation in the equilibrium populations of the folded and unfolded state for the most immature, disulfide-reduced metal-free SOD1. In this species, at physiological temperature, four out of five ALS variants were >50% unfolded.
Finally the energetic barriers in the folding and unfolding reaction were studied to investigate the unusually slow folding of SOD1. These results reveal that both unfolding and refolding are dominated by enthalpic barriers which may be explained by the desolvation of the chain and provide insights into the role of sequence in governing the folding pathway and rate.
|
350 |
Investigating Age-Dependent Arthropathy in a Circadian Mutant Mouse Model: A DissertationYu, Elizabeth A. 09 June 2011 (has links)
Ectopic calcification can cause pain and limit mobility. Studies suggest that circadian genes may play a role in the calcification process. Core circadian genes Clock, Npas2, and Bmal1 are transcription factors that form CLOCK:BMAL1 or NPAS2:BMAL1 transactivator complexes that drive the rhythmic expression of circadian oscillator genes and output genes. Circadian oscillator genes Period1-3 and Cryptochrome1-2 encode proteins that form transcription repressor complexes that feedback to inhibit CLOCK/NPAS2:BMAL1 activity, thus completing the feedback loop that is the basis of the molecular circadian clockwork. Arrhythmic Bmal1-/- mice exhibit site-specific, age-dependent arthropathy. While studying the circadian phenotype of Clock-/-;Npas2m/m double mutant mice, we discovered that these double mutant mice develop site-specific arthropathy similar to the arthropathy described in Bmal1-/- mice. Based on the circadian clockwork mechanism, we hypothesized that CLOCK/NPAS2:BMAL1 transactivator complexes drive the expression of a gene (or genes) that prevents age-dependent arthropathy. To investigate Clock-/-;Npas2m/m double mutant mouse arthropathy, we evaluated mutant mice using X-ray, micro-computed tomography, and histology, and found that Clock-/-;Npas2m/m double mutant mice exhibit age-dependent, site-specific arthropathy that phenocopies that of Bmal1-/- mice. The costosternal junction and calcaneal tendon are most prominently affected, in that calcification of those tissues is detectable as early as 4-5 weeks and 11-12 weeks, respectively. The arthropathic lesions in these tissues consist of calcium phosphate vii deposits, and in Bmal1-/- costosternal junction calcifications, the deposits contain calcium pyrophosphate dihydrate crystals. Mechanical stress, disregulation of centrally-regulated circadian rhythms, and systemic serum mineral imbalances likely do not contribute to this pathology. In vitro micromass cultures generated from Clock-/-;Npas2m/m double mutant mouse embryonic fibroblasts do not exhibit irregular chondrocyte differentiation compared to wild-type cultures, suggesting that chondrocyte cell-autonomous mechanisms are insufficient to induce this arthropathy. Analysis of Clock-/-;Npas2m/m double mutant intersternebral tissue RNA did not reveal significant changes in chondrocyte or calcification-related gene expression. Histological stains showed an absence of osteoblasts and osteoclasts around costosternal junction calcifications, suggesting that these cell types are not contributing to this pathology. Instead, chondrocytes are localized to the costosternal junction but there were no significant changes in the distribution of chondrocyte markers in this tissue, as evaluated by immunohistochemistry. These findings suggest that Clock or Npas2, and Bmal1, regulate ectopic calcification through a combination of systemic and local factors, and that the cells affected by Clock and Npas2, or Bmal1, disruption are a subset of the cells distributed in specific tissues that develop age-dependent arthropathy. The significance of these findings is that “circadian genes” play a role in the regulation of ectopic calcification in a non-oscillator capacity. Understanding this new mechanism by which ectopic calcification is controlled could lead to novel approaches for the treatment of some human calcification diseases.
|
Page generated in 0.3801 seconds