• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identidades polinomiais para o produto tensorial de PI-álgebras. / Polynomial identities for the tensor product of PI-algebras.

GALVÃO, Israel Burití. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:30:11Z No. of bitstreams: 1 ISRAEL BURITÍ GALVÃO - DISSERTAÇÃO PPGMAT 2012..pdf: 650302 bytes, checksum: a18f67c466fa85d401a769d86e98be3a (MD5) / Made available in DSpace on 2018-08-05T13:30:11Z (GMT). No. of bitstreams: 1 ISRAEL BURITÍ GALVÃO - DISSERTAÇÃO PPGMAT 2012..pdf: 650302 bytes, checksum: a18f67c466fa85d401a769d86e98be3a (MD5) Previous issue date: 2012-03 / CNPq / Nesta dissertação foi feita uma abordagem sobre identidades polinomiais para o produto tensorial de duas álgebras. Com base no crescimento da sequência de codimensões de uma PI-álgebra, estudado inicialmente por Regev em 1972, apresentamos uma prova de que o produto tensorial de duas PI-álgebras é ainda uma PI-álgebra. Depois, através do produto de Kronecker de caracteres e do clássico Teorema do Gancho de Amitsur e Regev, obtemos relações entre as codimensões e os cocaracteres de duas PI-álgebras e as codimensões e cocaracteres do seu produto tensorial. Também através do estudo de codimensões e cocaracteres, conseguimos exibir identidades polinomiais para o produto tensorial. / In this dissertation we study polynomial identities for the tensor product of two algebras. Based on the growth of the PI-algebra’s codimensions sequence, originally studied by Regev in 1972, we present a proof that the tensor product of two PI-algebras is still a PI-algebra. After this, using the Kronecker product of characters and the classic Amitsur and Regev Hook Theorem, we obtained relations between the codimensions and cocharacters of two PI-algebras and the codimensions and cocharacters of their tensor product. With the study of codimensions and cocharacters, we also exhibit polynomial identities for the tensor product.

Page generated in 0.0557 seconds