• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amélioration des explosifs par ajustement de leur balance en oxygène lors de la cristalisation par Evaporation Flash de Spray / Explosives enhancement by oxygen balance tuning throughout spray flash evaporation crystallization process

Berthe, Jean-Edouard 13 December 2018 (has links)
Dans la littérature, que ce soit pour un explosif secondaire ou un matériau composite, une balance en oxygène (BO) proche de 0% est assimilée à de bonnes performances énergétiques (vitesse de détonation, chaleur de décomposition, etc…). L’objectif majeur de cette thèse est d’améliorer les performances énergétiques d’explosifs secondaires courants (RDX, HMX, CL-20) par l’ajout d’un oxydant (DNA) afin d’obtenir un matériau composite avec une BO de -1%. Le mélange intime de ces deux composés est permis par un procédé d’évaporation flash de spray, utilisé habituellement pour réduire la taille de particules des explosifs. Les matériaux composites ont été cristallisés dans les trois cas avec succès, avec la présence d’explosif submicrométrique et de DNA nanostructuré. Un tel résultat a été permis grâce à une meilleure compréhension du procédé, et en conséquence l’ajustement des conditions expérimentales. L’étude de la réactivité de ces matériaux composites montre dans certains cas une désensibilisation, une diminution de la distance de la déflagration à la détonation, ou encore une augmentation de la vitesse de détonation, comparée aux explosifs correspondants. / In literature, for secondary explosive or composite material, an oxygen balance (OB) close to 0% is often linked to good energetic performances (detonation velocity, heat of decomposition, etc.). The main objective of this thesis is to enhance energetic performances of current secondary explosives (RDX, HMX, CL-20) by adding oxidizer (ADN) to obtain a composite material with an OB of -1%. The spray flash evaporation process, usually used for particle size reduction of explosives, enables to obtain an intimate mixture of these two compounds. Composite materials were successfully crystallized in three cases, resulting of submicrometric explosives and nanostructured ADN particles. These results were obtained thanks to a preliminary study for better process understanding and the optimization of experimental conditions. Reactivity studies show some desensitization, shorter distance from deflagration to detonation, and/or higher detonation velocity, compared to corresponding explosives.
2

Two-Dimensional Modeling of AP/HTPB Utilizing a Vorticity Formulation and One-Dimensional Modeling of AP and ADN

Gross, Matthew L. 16 August 2007 (has links) (PDF)
This document details original numerical studies performed by the author pertaining to the propellant oxidizer, ammonium perchlorate (AP). Detailed kinetic mechanisms have been utilized to model the combustion of the monopropellants AP and ADN, and a two-dimensional diffusion flame model has been developed to examine the flame structure above an AP/HTPB composite propellant. This work was part of an ongoing effort to develop theoretically based, a priori combustion models. The improved numerical model for AP combustion utilizes a “universal” gas-phase kinetic mechanism previously applied to combustion models of HMX, RDX, GAP, GAP/RDX, GAP/HMX, NG, BTTN, TMETN, GAP/BTTN, and GAP/RDX/BTTN. The universal kinetic mechanism has been expanded to include chlorine reactions, thus allowing the numerical modeling of AP. This is seen as a further step in developing a gas-phase kinetic mechanism capable of modeling various practical propellants. The new universal kinetic mechanism consists of 106 species and 611 reactions. Numerical results using this new mechanism provide excellent agreement with AP's burning rate, temperature sensitivity, and final species data. An extensive literature review has been conducted to extract experimental data and qualitative theories concerning ADN combustion. Based on the literature review, the first numerical model has also been developed for ADN that links the condensed and gas phases. The ADN model accurately predicts burning rates, temperature and species profiles, and other combustion characteristics of ADN at pressures below 20 atm. Proposed future work and modifications to the present model are suggested to account for ADN's unstable combustion at pressures between 20 and 100 atm. A two-dimensional model has been developed to study diffusion in composite propellant flames utilizing a vorticity formulation of the transport equations. This formulation allows for a more stable, robust, accurate, and faster solution method compared to the Navier-Stokes formulations of the equations. The model uses a detailed gas-phase kinetic mechanism consisting of 37 species and 127 reactions. Numerical studies have been performed to examine particle size, pressure, and formulation effects on the flame structure above an AP/HTPB propellant. The modeled flame structure was found to be qualitatively similar to the BDP model. Results were consistent with experimental observations. Three different combustion zones, based on particle size and pressure, were predicted: the AP monopropellant limit, the diffusion flame, and a premixed limit. Mechanistic insights are given into AP's unique combustion properties.
3

Green Propellants

Rahm, Martin January 2010 (has links)
To enable future environmentally friendly access to space by means of solid rocket propulsion a viable replacement to the hazardous ammonium perchlorate oxidizer is needed. Ammonium dinitramide (ADN) is one of few such compounds currently known. Unfortunately compatibility issues with many polymer binder systems and unexplained solid-state behavior have thus far hampered the development of ADN-based propellants. Chapters one, two and three offer a general introduction to the thesis, and into relevant aspects of quantum chemistry and polymer chemistry. Chapter four of this thesis presents extensive quantum chemical and spectroscopic studies that explain much of ADN’s anomalous reactivity, solid-state behavior and thermal stability. Polarization of surface dinitramide anions has been identified as the main reason for the decreased stability of solid ADN, and theoretical models have been developed to explain and predict the solid-state stability of general dinitramide salts. Experimental decomposition characteristics for ADN, such as activation energy and decomposition products, have been explained for different physical conditions. The reactivity of ADN towards many chemical groups is explained by ammonium-mediated conjugate addition reactions. It is predicted that ADN can be stabilized by changing the surface chemistry with additives, for example by using hydrogen bond donors, and by trapping radical intermediates using suitable amine-functionalities. Chapter five presents several conceptual green energetic materials (GEMs), including different pentazolate derivatives, which have been subjected to thorough theoretical studies. One of these, trinitramide (TNA), has been synthesized and characterized by vibrational and nuclear magnetic resonance spectroscopy. Finally, chapter six covers the synthesis of several polymeric materials based on polyoxetanes, which have been tested for compatibility with ADN. Successful formation of polymer matrices based on the ADN-compatible polyglycidyl azide polymer (GAP) has been demonstrated using a novel type of macromolecular curing agent. In light of these results further work towards ADN-propellants is strongly encouraged. / QC 20101103

Page generated in 0.0538 seconds