• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution to the Study of Fracture in Amorphous Polymers: Experiments and Modeling

De Castro, Anthony 2010 December 1900 (has links)
Glassy polymers are extensively used to make all kinds of structural components. Polymers, such as epoxies, are often chosen as matrices in polymer matrix composites (PMC). Ever since the 1960s, these types of composites have been gaining importance in aerospace and automotive advanced applications due to their high sti ness and weight saving potential. In order to provide clues on the dependence of the fracture behavior upon the stress triaxiality, a series of tensile tests on epoxy (Epon862) round notched bars were carried out at NASA Glenn Research Center. Using state-of-the-art non-contact dig- ital image correlation measurement technique, the mechanical quantities of interest were extracted in order to understand how the fracture behavior responds when sub- jected to various levels of stress triaxiality induced by varying the notch radius of the specimens. E ects of aging on the fracture behavior were also investigated. A physics-based macromolecular constitutive model that accounts for temperature and pressure sensitivity as well as small-strain softening and large-strain hardening was used to model the deformation behavior. Good correlation between experiments and numerical simulations was achieved. To predict fracture, a pressure-sensitive model motivated by previous work is introduced. Based on the experimental and numerical results, the relation between the mean strain to failure versus the stress triaxiality was de ned and it was shown that the fracture response of the material is strongly a ected by the level of stress triaxiality.
2

High strain rate compression testing of polymers : PTFE, PCTFE, PVC and PMMA

Forrester, Hsuan-Hsiou January 2013 (has links)
The mechanically compressive flow stress sensitivities of various polymers are investigated at high strain rates above 103 s-1. Temperatures near the glass transition temperature are investigated and the polymer stress-strain responses have been studied from ambient temperature to 100°C. Previous work has reported peaks in flow stress as a function of strain rate [Al-Maliky/Parry 1994, Al-Maliky 1997]. The analyses showed rapid increases of flow stress followed by a sudden drop at elevated strain rates, which is unlike the well known linear relationship documented at the low strain rates. The mechanics and stipulation of what bring about this phenomenon, or the types of polymers influenced are still unclear. Two fluoropolymers, polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE), and two vinyl polymers, polyvinylchloride (PVC) and polymethylmethacrylate (PMMA), are chosen for this study. PTFE, PCTFE and PVC are semi-crystalline polymers with different percentage of crystallinity contents, whereas PMMA is an amorphous polymer. The glass transition temperature, Tg, is the characteristic of the amorphous content in polymers, which has been suggested to influence the flow stress peaks [Swallowe/Lee 2003]. Tg of the semi-crystalline polymers are within the test temperature range. High strain rate compression tests have been carried out using the split Hopkinson pressure bar (SHPB). This is a well-established method for determining the stress, strain, and strain rate of materials. The strain rate range of interest is 103 s-1 to 105 s-1 where the strain rate sensitivity has previously been identified [Al-Maliky/Parry 1994, Al-Maliky 1997, Walley/Field 1994]. Two thermal analyses techniques are used to quantify the dependency of the viscoelastic behaviour in relation to time and temperature. Differential scanning calorimetry (DSC) measures the enthalpy of the polymers to show how the materials are affected by heat, and Dynamic mechanical analysis (DMA) is used to characterise the time-temperature dependence of the elastic storage and loss moduli of the polymers A total of 42 PCTFE, 44 PTFE, 45 PVC and 55 PMMA specimens were tested using the SHPB system, with the strain rate varying between 1600 s-1 and 6100 s-1. Initial results for PMMA have been reported [Forrester/Swallowe 2009]. The rate of strain where specimens begin to show crazing is identified. The value of yield stress increases with the increase of strain rate and the decrease in temperature. Large strain hardening can be seen in all three semi-crystalline polymers at higher strain rates. The temperature rise during plastic flow of compression is calculated by the stress-strain rate curves. In this thesis, the emphasis is on the relation of yield/flow stress to strain rate as the polymers deform under high strain compression. The mechanism behind the cause of high strain rate deformation responses for amorphous to semi-crystalline polymers in ductile state is discussed, with a view to understanding the sensitivity of yield/flow stresses as a function of strain rate. Also, the modelling of the polymers has been carried in order to alleviate doubts about the validity of the real experimental results that may arise due to the nature of the decomposition of the polymers. It has been shown that the strain energy density pulses through the sample in response to the compression wave in various circular intensities.
3

Intégration dans un code éléments finis d'un modèle de comportement en grandes déformations pour les polymères amorphes : applications à une large gamme de vitesses de déformation et à la mise en forme / Implementation in a finite element code of constitutive model for amorphous polymers : applications to a wide range of strain rate anf forming processes

Bernard, Chrystelle 16 June 2015 (has links)
De nos jours, de nombreuses pièces mécaniques sont fabriquées en polymères. Ces matériaux présentent un comportement complexe très sensible à la vitesse de déformation et à la température. De nombreux modèles de comportement mécanique, tenant compte de cette double sensibilité, ont été développés au cours des dernières années dans le but de décrire le comportement élasto-viscoplastique des polymères en grandes déformations sur de larges plages de vitesses de déformation et de températures. Afin de prévoir la tenue de pièces mécaniques en polymère soumises à un ensemble de sollicitations complexes, l'utilisation de méthodes numériques, telles que la méthode des Éléments Finis (EF), s'avèrent incontournables. Cependant, la qualité de la prévision numérique est fortement dépendante de la loi de comportement utilisée. Ainsi, nous proposons d'étudier deux modèles de comportement qui ont été introduits dans deux codes de calcul par EF : un modèle phénoménologique simple, introduit dans CAST3M, et un modèle micromécanique, introduit dans ABAQUS/Explicit. Le modèle phénoménologique permet de modéliser le comportement mécanique des polymères vitreux en petites déformations sur une plage de vitesses de déformation et de températures réduite. Un essai de compression reproduisant le dispositif des barres d'Hopkinson a été simulé pour plusieurs vitesses de déformation et températures. Une bonne corrélation a été trouvée entre résultats expérimentaux et les prévisions numériques. De plus, de rapides estimations du coefficient de Taylor-Quinney et de la contrainte à l'interface, liée au frottement entre l'échantillon et les barres de compression, ont pu être trouvées. Le modèle micromécanique décrit le comportement des polymères amorphes en grandes déformations sur de larges gammes de vitesses de déformation et de températures. Il a été développé au sein de notre équipe de recherche par Richeton et al. [Int. J. Solids Struct. 44 (2007) 7938] et propose une dépendance à la vitesse de déformation et à la température de différentes propriétés matériau (module élastique, contrainte seuil, durcissement structural). Afin de modéliser le comportement de structures polymères soumises à des chargements dynamiques ou à de la mise en forme, un sous-programme VUMAT est écrit. Après validation de l'intégration numérique du sous-programme sur des essais de compression/traction simple, deux applications ont été simulées. La première application a consisté en la modélisation d'un essai d'impact d'une plaque polymère par un projectile hémisphérique. La seconde application est un essai de forgeage à froid. Dans les deux cas, les prévisions numériques sont en accord avec les résultats expérimentaux issus de la littérature. / Nowadays, numerous structural parts are made in polymeric materials. These materials exhibit a complex behavior strongly sensitive to strain rate and temperature. Numerous constitutive equations have been developed during the last decades in order to describe the elastic-viscoplastic behavior of polymers in finite strain for a wide range of strain rates and temperature. To provide for the holding of mechanical parts polymer subject to a complex set of loads, the use of numerical methods, such as Finite Element (FE) method, is unavoidable. However, the quality of the numerical prediction is strongly dependent to the used constitutive equations. Thus, we proposed to study two models of mechanical behavior implemented in two FE softwares: a simple phenomenological model, introduced in CAST3M, and a micromechanical model, introduced in ABAQUS/Explicit. The phenomenological model allows simulating the mechanical behavior of glassy polymers in small strains over a reduced range of strain rates and temperatures. A compressive test reproducing the Split Hopkinson Pressure Bar device is simulated for several strain rates and temperatures. A good correlation is found between experimental results and numerical predictions. Moreover, an estimation of Taylor-Quinney coefficient and the interfacial stress, due to the friction between the polymer sample and the compressive bars, have been found. The micromechanical model describes the mechanical behavior of amorphous polymers in finite strain over a wide range of strain rates and temperatures. It has been developed in our research team by Richeton et al. [Int. J. Solids Struct. 44 (2007) 7938] and proposes to take into account the strain rate and temperature dependence of various material properties (elastic modulus, yield stress, orientational hardening). In order to simulate the mechanical behaviour of polymeric structures under dynamic loadings or during forming processes, a VUMAT subroutine is written. After validation of the numerical implementation of the VUMAT subroutine for simple compressive/tensile tests, two applications were simulated. The first application is a normal impact test of a polymeric plate by a hemispherical projectile. The second application is a cold forging test. In both cases, numerical predictions are in agreement with the experimental results from the literature.
4

Modélisation physique, simulation numérique et investigation expérimentale de l'estampage à chaud des polymères thermoplastiques amorphes / Physical modeling, numerical simulation and experimental investigation of hot embossing process with the amorphous thermoplastic polymers

Shu, Cheng-Gang 03 June 2014 (has links)
Le procédé d’estampage à chaud est considéré comme l'un des procédés les plus prometteurs de micro-Réplication pour l'élaboration des micro-Composants ou nano-Composants avec des matériaux polymériques dans différents domaines d'application . La mémoire consiste à caractériser les propriétés physiques des polymères thermoplastiques amorphes (PS, PMMA et PC) sur une large plage de température, ainsi que la modélisation physique, la simulation numérique et vérification expérimentale du procédé d’estampage à chaud.[...]Les propriétés visco élastiques des polymères retenus ont été caractérisées avec les essais décompression dynamiques. Le module de conservation, le module de perte et le facteur d'amortissement de polymère PMMA à partir de la température ambiante jusqu'à légèrement au-Dessus de Tg ont été obtenues. Le comportement visco élastique des polymères a été décrit par un modèle de Maxwell Généralisé et un bon accord a été observé. La simulation numérique des étapes du remplissage de procédé d’estampage à chaud a été réalisée enprenant compte des propriétés visco élastiques de polymère. Les effets de la température et dela pression de compression sur l'exactitude de réplication dans le procédé d’estampage à chaud ont été étudiés.[...]Un nouveau moule de compression complet, y compris le système de chauffage, le système de refroidissement et le système de vide a été développé dans notre groupe de recherche. Les dispositifs micro fluidiques avec la dimension de la cavité : environ 200 μm, 100 μm et 50 μmen PS, PMMA et PC plaque (épaisseur de 2 mm) ont été élaborés par le procédé d’estampage à chaud. Les effets des paramètres du procédé, tels que l’entrefer imposé, la température décompression, la matière compressée et la dimension de micro cavité, sur l’exactitude de réplication du procédé d’estampage à chaud ont été étudiés. / Hot embossing process is considered as one of the most promising micro replication processes for the elaboration of micro or nano components with polymeric materials invarious application fields. The thesis consists to characterize the physical properties of widelyused amorphous thermoplastic polymers (PS, PMMA and PC) over a large temperature range,along with the physical modelling, numerical simulation and experimental verification of thehot embossing process.[...] The polymers’ viscoelastic properties have been characterized with the dynamical compression tests. The storage modulus, loss modulus and damping factor of PMMA polymerfrom ambient temperature to lightly above Tg have been obtained. The viscoelastic behaviourof polymer has been described by a proposed Generalized Maxwell model and a good agreement has been observed. The numerical simulation of filling stage of hot embossing process has been achieved by taking into account of polymer’s viscoelastic properties. Theeffect of compression temperature and pressure on the replication accuracy in hot embossing process has been investigated in the simulation.[...] A new complete micro compression mould tools, including heating system, cooling system and vacuum system have been developed in our research group. The microfluidic devices with the cavity dimension eq. to about 200 μm, 100 μm and 50 μm in PS, PMMA and PC plate(thickness eq. to 2 mm) have been elaborated by the hot embossing process. The effects of the processing parameters, such as the compressive gap imposed, compression temperature, embossed material and die cavity dimensions, on the replication accuracy of hot embossing process have been investigated.

Page generated in 0.0556 seconds