Spelling suggestions: "subject:"amplitude distortion"" "subject:"aamplitude distortion""
1 |
A Data Assimilation Scheme for the One-dimensional Shallow Water EquationsKhan, Ramsha January 2017 (has links)
For accurate prediction of tsunami wave propagation, information on the system of PDEs modelling its evolution and full initial and/or boundary data is required. However the latter is not generally fully available, and so the primary objective becomes to find an optimal estimate of these conditions, using available information. Data Assimilation is a methodology used to optimally integrate observed measurements into a mathematical model, to generate a better estimate of some control parameter, such as the initial condition of the wave, or the sea floor bathymetry. In this study, we considered the shallow water equations in both linear and non-linear form as an approximation for ocean wave propagation, and derived a data assimilation scheme based on the calculus of variations, the purpose of which is to optimise some distorted form of the initial condition to give a prediction closer to the exact initial data. We considered two possible forms of distortion, by adding noise to our initial wave, and by rescaling the wave amplitude. Multiple cases were analysed, with observations measured at different points in our spatial domain, as well as variations in the number of observation points. We found that the error between measurements and observation data was sufficiently minimised across all cases. A relationship was found between the number of measurement points and the error, dependent on the choice of where measurements were taken. In the linear case, since the wave form simply translates a fixed form, multiple measurement points did not necessarily provide more information.
In the nonlinear case, because the waveform changes shape as it translates, adding more measurement points provides more information about the dynamics and the wave shape. This is reflected in the fact that in the nonlinear case adding more points gave a bigger decrease in error, and much closer convergence of the optimised guess for our initial condition to the exact initial wave profile. / Thesis / Master of Science (MSc) / In ocean wave modelling, information on the system dynamics and full initial and/or boundary data is required. When the latter is not fully available the primary objective is to find an optimal estimate of these conditions, using available information. Data Assimilation is a methodology used to optimally integrate observed measurements into a mathematical model, to generate a better estimate of some control parameter, such as the initial condition of the wave, or the sea floor bathymetry. In this study, we considered the shallow water equations in both linear and non-linear form as an approximation for ocean wave propagation, and derived a data assimilation scheme to optimise some distorted form of the initial condition to generate predictions converging to the exact initial data. The error between measurements and observation data was sufficiently minimised across all cases. A relationship was found between the number of measurement points and the error, dependent on the choice of where measurements were taken.
|
2 |
DSP compensation for distortion in RF filtersAlijan, Mehdi 13 April 2010
There is a growing demand for the high quality TV programs such as High Definition TV (HDTV). The CATV network is often a suitable solution to address this demand using a CATV modem delivering high data rate digital signals in a cost effective manner, thereby, utilizing a complex digital modulation scheme is inevitable. Exploiting complex modulation schemes, entails a more sophisticated modulator and distribution system with much tighter tolerances. However, there are always distortions introduced to the modulated signal in the modulator degrading signal quality.<p>
In this research, the effect of distortions introduced by the RF band pass filter in the modulator will be considered which cause degradations on the quality of the output Quadrature Amplitude Modulated (QAM) signal. Since the RF filter's amplitude/group delay distortions are not symmetrical in the frequency domain, once translated into the base band they have a complex effect on the QAM signal. Using Matlab, the degradation effects of these distortions on the QAM signal such as Bit Error Rate (BER) is investigated.<p>
In order to compensate for the effects of the RF filter distortions, two different methods are proposed. In the first method, a complex base band compensation filter is placed after the pulse shaping filter (SRRC). The coefficients of this complex filter are determined using an optimization algorithm developed during this research. The second approach, uses a pre-equalizer in the form of a Feed Forward FIR structure placed before the pulse shaping filter (SRRC). The coefficients of this pre-equalizer are determined using the equalization algorithm employed in a test receiver, with its tap weights generating the inverse response of the RF filter. The compensation of RF filter distortions in base band, in turn, improves the QAM signal parameters such as Modulation Error Ratio (MER). Finally, the MER of the modulated QAM signal before and after the base band compensation is compared between the two methods, showing a significant enhancement in the RF modulator performance.
|
3 |
DSP compensation for distortion in RF filtersAlijan, Mehdi 13 April 2010 (has links)
There is a growing demand for the high quality TV programs such as High Definition TV (HDTV). The CATV network is often a suitable solution to address this demand using a CATV modem delivering high data rate digital signals in a cost effective manner, thereby, utilizing a complex digital modulation scheme is inevitable. Exploiting complex modulation schemes, entails a more sophisticated modulator and distribution system with much tighter tolerances. However, there are always distortions introduced to the modulated signal in the modulator degrading signal quality.<p>
In this research, the effect of distortions introduced by the RF band pass filter in the modulator will be considered which cause degradations on the quality of the output Quadrature Amplitude Modulated (QAM) signal. Since the RF filter's amplitude/group delay distortions are not symmetrical in the frequency domain, once translated into the base band they have a complex effect on the QAM signal. Using Matlab, the degradation effects of these distortions on the QAM signal such as Bit Error Rate (BER) is investigated.<p>
In order to compensate for the effects of the RF filter distortions, two different methods are proposed. In the first method, a complex base band compensation filter is placed after the pulse shaping filter (SRRC). The coefficients of this complex filter are determined using an optimization algorithm developed during this research. The second approach, uses a pre-equalizer in the form of a Feed Forward FIR structure placed before the pulse shaping filter (SRRC). The coefficients of this pre-equalizer are determined using the equalization algorithm employed in a test receiver, with its tap weights generating the inverse response of the RF filter. The compensation of RF filter distortions in base band, in turn, improves the QAM signal parameters such as Modulation Error Ratio (MER). Finally, the MER of the modulated QAM signal before and after the base band compensation is compared between the two methods, showing a significant enhancement in the RF modulator performance.
|
Page generated in 0.0812 seconds