Spelling suggestions: "subject:"amyloid"" "subject:"myloid""
261 |
A Brief Elevation of Serum Amyloid A is Sufficient to Increase AtherosclerosisThompson, Joel C 01 January 2014 (has links)
Cardiovascular disease is now the leading cause of death worldwide. Serum amyloid A (SAA), a positive acute phase reactant, along with C-reactive protein is used clinically as a marker of cardiovascular disease risk. However, recent data has shed light on a possible causal role of SAA in the development of atherosclerosis, the most pervasive form of cardiovascular disease. Several inflammatory diseases such as diabetes and obesity are known to confer increased risk of developing cardiovascular disease. Individuals with these diseases all have modest but persistent elevation of SAA. To determine if SAA caused the development of atherosclerosis, apoe-/-chow fed mice were injected with either an adenoviral vector expressing human SAA1 (ad-hSAA1), a null adenoviral vector (ad-Null) or saline. Human SAA levels rapidly increased, albeit briefly then returned to baseline within 14 days in mice that received ad-hSAA1. After 16 weeks, mice that received ad-hSAA1 had significantly increased atherosclerosis compared to controls on the aortic intimal surface (p<0.0001), aortic sinus (p<0.05) and the brachiocephalic artery (p<0.05). According to the “response to retention” hypothesis; lipoprotein retention by vascular wall proteoglycans is a key initiating event in the development of atherosclerosis. We previously reported that SAA-stimulated vascular smooth muscle cells expressed biglycan with increased glycosaminoglycan chain length and increased binding affinity for low density lipoprotein. To further test the role of biglycan on the development of atherosclerosis we generated biglycan transgenic mice. These mice were crossed to the ldlr-/- mouse on a C57BL/6 background and fed a pro-atherogenic western diet for 12 weeks. There was a significant increase in atherosclerotic lesion area on the aortic intimal surface (p<0.05) and the aortic sinus (p<0.006), as well as a significant correlation between vascular biglycan content and aortic sinus atherosclerotic lesion area (p<0.0001). These data demonstrate that transiently increased SAA resulted in increased atherosclerosis compared to control mice, possibly via increased vascular biglycan content. In support of this we found that biglycan transgenic mice had significantly increased atherosclerosis compared to wildtype controls, likely through increased lipid retention in the vascular wall.
|
262 |
Convection-enhanced drug delivery and its application to Alzheimer's diseaseBarua, Neil U. January 2013 (has links)
No description available.
|
263 |
Roles of protein sequence and cell environment in cross-species prion transmission and amyloid interferenceBruce, Kathryn Lyn 27 August 2014 (has links)
Proteinaceous infectious particles, termed 'prions' are self-perpetuating protein isoforms that transmit neurodegenerative diseases in mammals and phenotypic traits in yeast. Each conformational variant of a prion protein is faithfully propagated to a homologous protein in the same cell environment. However, a reduction in the efficiency of prion transmission between different species is often observed and is termed "species barrier". Prion transmission to a heterologous protein may, in some cases, permanently change the structure of the prion variant, and divergent proteins may interfere with prion propagation in a species-specific manner. To identify the importance of both protein sequence and the cell environment on prion interference and cross-species transmission, we employed heterologous Sup35 proteins from three Saccharomyces sensu stricto species: Saccharomyces cerevisiae (Sc), Saccharomyces paradoxus (Sp), and Saccharomyces bayanus (Sb). We performed our experiments in two different cell environments (Sc and Sp). Our data show that Sup35 from one species can form a prion in another, and we employed a transfection procedure to perform cross-species transfer of the prion. Using a shuffle procedure, we demonstrate that the specificity of prion transmission is determined by the protein itself rather than the cell environment. Interestingly, we noted that variant-specific prion patterns can be altered irreversibly during cross-species transmission through S. bayanus module II. We further show that prion interference does not always correlate with cross-species prion transmission, and the identity of particular regions or even a specific amino acid, rather than the overall level of PrD homology is crucial for determining cross-species transmission and interference. Lastly we provide evidence to suggest that prion interference is specific to the cell environment.
|
264 |
Nanoscale Chemical Imaging of Synthetic and Biological Materials using Apertureless Near-field Scanning Infrared MicroscopyPaulite, Melissa Joanne 19 December 2012 (has links)
Apertureless near-field scanning infrared microscopy is a technique in which an impinging infrared beam is scattered by a sharp atomic force microscopy (AFM) tip oscillating at the resonant frequency of the cantilever in close proximity to a sample. Several advantages offered by near-field imaging include nanoscale imaging with high spatial resolution (near-field imaging is not restricted by the diffraction limit of light) and the ability to differentiate between chemical properties of distinct compounds present in the sample under study due to differences in the scattered field.
An overview of the assembly, tuning, and implementation of the near-field instrumentation is provided, as well as detailed descriptions about the samples probed and other instrumentation used. A description of the near-field phenomena, a comparison between aperture and apertureless-type near-field microscopy, and the coupled dipoles model explaining the origin of the chemical contrast present in near-field infrared imaging was discussed.
Simultaneous topographic and chemical contrast images were collected at different wavelengths for the block copolymer thin film, polystyrene-b-poly(methyl ethacrylate) (PS-b-PMMA) and for amyloid fibrils synthesized from the #21-31 peptide of β2-microglobulin. In both cases it was
observed that the experimental scattered field spectrum correlates strongly with that calculated using the far-field absorption spectrum, and using near-field microscopy, nanoscale structural and/or compositional variations were observed, which would not have been possible using ensemble FTIR measurements. Lastly, tip-enhanced Raman spectra of the #21-31 and #16-22 peptide fragments from the β2-microglobulin and Aβ(1-40) peptide were collected, examined, and an outline of the optimization conditions described.
|
265 |
Design, Synthesis and Biological Evaluation of 2,4-Disubstituted Pyrimidine Derivatives: Multifunctional Candidates as Potential Treatment Options for Alzheimer’s DiseaseMohamed, Tarek January 2011 (has links)
Alzheimer’s disease (AD) is a highly complex and rapidly progressive neurodegenerative disorder characterized by the systemic collapse of cognitive function and formation of dense amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs). AD pathology is derived from the cholinergic, amyloid and tau hypotheses, respectively. Current pharmacotherapy with known anti-cholinesterases, such as Aricept ® and Exelon ®, only offer symptomatic relief without any disease-modifying effects (DMEs). It is now clear that in order to prevent the rapid progression of AD, new therapeutic treatments should target multiple AD pathways as opposed to the traditional “one drug, one target” approach. This research project employed medicinal chemistry tools to develop multifunctional small organic molecules against three key targets of AD pathology – the cholinesterases (AChE and BuChE), AChE-induced and self-induced Aβ1-40 aggregation and generation (β-secretase). A chemical library composed of 112 derivatives was generated to gather structure-activity relationship (SAR) data. The derivatives were based on a novel, non-fused, 2,4-disubstituted pyrimidine ring (2,4-DPR) template with substituents at the C-2 and C-4 position varying in size, steric and electronic properties. Molecular modeling was utilized to investigate their binding modes within the target enzymes and along with the acquired SAR, the chemical library was screened to identify lead multifunctional candidates.
|
266 |
The effects of a human b-amyloid gene on learning and memory in transgenic mice / / Effects of a human beta-amyloid gene on learning in transgenic miceTirado Santiago, Giovanni January 1994 (has links)
Brain deposition of the $ beta$-amyloid protein is an early marker of Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by learning and memory impairments. Here, mice (B6C3, 8 and 20 months old) transgenic for a human $ beta$-amyloid fragment were compared to normal litter mates in spatial and non-spatial learning tasks in the Morris water maze, according to standard procedures. Four measures of learning and performance were analyzed statistically: latency, total distance swam, mean distance to a platform, and number of trials correct in reaching a platform. Transgenic mice were impaired relative to their litter mates in spatial learning and performed better in the non-spatial task than in the spatial task in the first three measures. An age effect for transgenics was observed in the total distance measure. The results suggest that expression of the human $ beta$-amyloid protein may produce a selective learning deficit in mice.
|
267 |
Untersuchungen zu biochemischen und morphologischen Veränderungen im Hirn der transgenen Maus Tg2576 mit beta-Amyloidplaque-PathologieKlingner, Margrit 01 June 2005 (has links) (PDF)
Die Alzheimersche Erkrankung (AD) ist die häufigste Demenzerkrankung bei älteren Menschen in den westlichen Industriestaaten mit ständig wachsender Zahl der Erkrankten. Trotz angestrengter wissenschaftlicher und medizinischer Forschung ist u. a. noch keine Möglichkeit der klinischen Frühdiagnose dieser Erkrankung etabliert. In der vorliegenden Arbeit wurden am transgenen Mausmodell Tg2576 mit beta-Amyloidplaque-Pathologie cholinerge und adrenerge Parameter sowie Einfluss-größen des Energiestoffwechsels untersucht, um transgen-induzierte neuro-chemische bzw. neuromorphologische Veränderungen im Hirngewebe zu erkennen. Außerdem sollte die Möglichkeit einer ex vivo Markierung solcher Moleküle getestet werden, von denen eine besondere Bindungsaffinität an beta-Amyloidablagerungen bereits bekannt ist. Das Ziel der vorliegenden Arbeit war, diese Mauslinie weiterhin hinsichtlich ihres Modellcharakters für die Alzheimersche Erkrankung zu beschreiben und potenzielle Plaque-assoziierte Markermoleküle aufzufinden, die einen in vivo Nachweis der b-Amyloidablagerungen erlauben. Die so gewonnenen Erkenntnisse könnten zur Entwicklung neuer Strategien zur Frühdiagnostik der Alzheimerschen Erkrankung beitragen. Genutzt wurden dazu v. a. die biochemischen Methoden der Rezeptorautoradiografie und der Immunhistochemie sowie der in situ Hybridisierung als molekularbiologische Methode. Weiterhin wurde eine radiochemische Methode zur ex vivo Darstellung der Azetylcholinesterase getestet. Bei der Untersuchung des cholinergen Systems konnte eine signifikante Verringerung in der [3H]Hemicholinium-3-Bindung (als Marker des hoch affinen Cholintransporters) bei den fünf Monate alten transgenen Mäusen im Vergleich zu deren nicht transgenen Wurfgeschwistern festgestellt werden. Es wird hier von einem modulatorischen Effekt des löslichen beta-Amyloids ausgegangen, da die jüngeren Tiere noch keine Plaqueablagerungen aufweisen, die Ursache solcher Veränderungen sein könnten. Beim vesikulären Azetylcholintransposter (VAChT) konnte eine signifikante Erhöhung in der [3H]Vesamicol-Bindung bei 17 Monate alten transgenen Mäusen im Vergleich zu nicht transgenen Geschwistertieren beobachtet werden, obwohl der gegenteilige Fall erwartet wurde. Das Ergebnis wird als Ausdruck einer erhöhten Vesikeldichte interpretiert. Die immunhistochemische Untersuchung der a4- und a7-Untereinheiten der nikoti-nischen Azetylcholinrezeptoren ergab, dass die beta-Amyloidplaqueablagerung keinen Einfluss auf morphologische Veränderungen der Neuronen hatte, die diese Rezep-toren tragen. Es gab keine Hinweise, dass solche Neuronen degenerieren. Hinsichtlich der untersuchten Parameter des Glukosestoffwechsels konnten keine Veränderungen zwischen transgenen Tieren und nicht transgenen Wurfgeschwistern festgestellt werden. Bei der Verteilung der Hirnkapillaren konnte eine verringerte Dichte in unmittelbarer Umgebung der b-Amyloidplaques, verglichen mit weiter entfernt liegenden Gebieten, ermittelt werden. Dieser Befund bedarf weiterer Unter-suchungen, da er Relevanz für die in vivo Diagnostik und Therapie besitzen könnte. Im Vergleich mit den zwar oft nicht einheitlichen Befunden bei Alzheimerpatienten wird deutlich, dass das Mausmodell Tg2576 als Modell der Alzheimerschen Erkrankung nicht alle Aspekte der Pathogenese simuliert. Übereinstimmungen ergeben sich bei dieser transgenen Maus hinsichtlich der beta-Amyloidproduktion und -ablagerung im Hirn und den auch beim Menschen vorkommenden entzündlichen Reaktion um die Plaques. Damit kann sie als geeignetes Modell zum Studium der Amyloidogenese und damit verbundener inflammatorischer Prozesse angesehen werden. / Alzheimer´s Disease (AD) is the most common form of dementia among the elderly in the Western world, with growing prevalence. In spite of intensive scientific and medical research, no possibility of early clinical diagnosis for this disease has yet been established. In this thesis cholinergic and adrenergic parameters, as well as energy metabolism, were studied in the transgenic mouse model Tg2576, to reveal transgene-induced neurochemical and neuromorphological changes in the brain tissue of these animals. Also, the ex vivo labelling of marker molecules with a known high affinity for beta-amyloid was to be tested. The objective was to further characterize the Tg2576 mouse strain as a model of AD, and to find plaque-associated marker molecules which could be used for the in vivo detection of b-amyloid plaques. Such findings could contribute to the development of new stategies for the early diagnosis of AD. Quantitative receptor autoradiography, immunohistochemistry and in situ hybridization were the main biochemical and molecular biological methods employed. Furthermore, a radiochemical method was used for ex vivo labelling of acetylcholinesterase. The 5 month-old transgenic mice, with no significant plaque load, demonstrated reduced [3H]hemicholinium-3 binding to choline uptake sites in anterior brain regions, as compared to non-transgenic littermates. This provides evidence of the modulatory effect of soluble beta-amyloid on high affinity choline uptake sites. However, a significant increase of [3H]vesamicol receptor binding to the vesicular acetylcholine transporter was detected in 17 month-old transgenic animals, as compared to non-transgenic mice. Even though the opposite was expected, the result could be interpreted as an elevated vesicle density. The immunhistochemical studies of a4 and a7 subunits of the nicotinic acetylcholine receptor revealed that neurons expressing these receptors do not undergo morphological changes in close proximity to beta-amyloid plaques. There was no sign of degeneration in these neurons. Concerning the examined parameters of glucose metabolism, no changes between transgenic animals and non-transgenic littermates were detected. This observation is in accordance with the data available in the literature, but in contrast to findings in AD patients. The density of brain capillaries in close vicinity of beta-amyloid plaques, compared to a more distant surrounding, is reduced. This finding needs further examination because it could be relevant for in vivo diagnosis and therapy. Comparing the transgenic Tg2576 mouse model to AD patients, it becomes apparent that the mouse model does not simulate all aspects of the pathogenesis of this disease. Consistent with the human disease this model is characterized by b-amyloid plaque production and deposition in the brain, as well as inflammatory processes around the plaques, which are also known in humans. Therefore, it represents a suitable model to study amyloidogenesis and inflammation.
|
268 |
Modelling aspects of neurodegeneration in Saccharomyces cerevisiaeTraini, Mathew, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2009 (has links)
The neurodegenerative disorders Alzheimer??s Disease (AD) and Parkinson??s Disease (PD) are characterised by the accumulation of misfolded amyloid beta 1-42 peptide (Aβ1-42) or α-synuclein, respectively. In both cases, there is extensive evidence to support a central role for these aggregation-prone molecules in the progression of disease pathology. However, the precise mechanisms through which Aβ1-42 and α-synuclein contribute to neurodegeneration remain unclear. Organismal, cellular and in vitro models are under development to allow elucidation of these mechanisms. A cellular system for the study of intracellular Aβ1-42 misfolding and localisation was developed, based on expression of an Aβ1-42-GFP fusion protein in the model eukaryote Saccharomyces cerevisiae. This system relies on the known inverse relationship between GFP fluorescence, and the propensity to misfold of an N-terminal fusion domain. To discover cellular processes that may affect the misfolding and localisation of intracellular Aβ1-42, the Aβ1-42-GFP reporter was transformed into the S. cerevisiae genome deletion mutant collection and screened for fluorescence. 94 deletion mutants exhibited increased Aβ1-42-GFP fluorescence, indicative of altered Aβ1-42 misfolding. These mutants were involved in a number of cellular processes with suspected relationships to AD, including the tricarboxylic acid cycle, chromatin remodelling and phospholipid metabolism. Detailed examination of mutants involved in phosphatidylcholine synthesis revealed the potential for phospholipid composition to influence the intracellular aggregation and localisation of Aβ1-42. In addition, an existing S. cerevisiae model of α-synuclein pathobiology was extended to study the effects of compounds that have been hypothesized to be environmental risk factors leading to increased risk of developing PD. Exposure of cells to aluminium, dieldrin and compounds generating reactive oxygen species enhanced the toxicity of α- synuclein expression, supporting suggested roles for these agents in the onset and development of PD. Expression of α-synuclein-GFP in phosphatidylcholine synthesis mutants identified in the Aβ1-42-GFP fluorescence screen resulted in dramatic alteration of α-synuclein localisation, indicating a common involvement of phospholipid metabolism and composition in modulating the behaviours of these two aggregation-prone proteins.
|
269 |
Intramembrane proteolysis mediated by the gamma-secretase complex Nicastrin functions as a substrate receptorShah, Sanjiv January 2006 (has links)
Dissertation (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Vita. Bibliography: pp. 135-148.
|
270 |
Interaction between pancreatic cancer and beta cells : intraislet significance of islet amyloid polypeptide /Wang, Feng, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 6 uppsatser.
|
Page generated in 0.0408 seconds