• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 14
  • 12
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 288
  • 288
  • 195
  • 147
  • 135
  • 62
  • 41
  • 40
  • 38
  • 28
  • 28
  • 22
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Strategies for Preventing Age and Neurodegenerative Disease-associated Mitochondrial Dysfunction

Delic, Vedad 01 January 2015 (has links)
Mitochondrial dysfunction plays a pivotal role in the development of aging phenotypes and aging-associated neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Amyotrophic lateral sclerosis (ALS). Strategies that restore mitochondrial dysfunction may rescue the deficits of central metabolism in these disorders and improve cell survival. For example, we found that modulating the mTOR signaling pathway in a tissue culture model of aging-induced mitochondrial DNA mutation enhanced mitochondrial function as evidenced by increased oxygen consumption. Our previous melatonin studies also led us to hypothesize that caloric restriction and the hormone melatonin would reverse brain mitochondrial dysfunction in animal models of AD. Although caloric restriction did not improve mitochondrial function in a transgenic P301L tau model of AD, novel insight into the regulation of F0-F1 ATP synthase activity under CR was gained that may help explain the protective effects of CR in other disease models. In addition, we determined the effects of melatonin treatment on brain mitochondrial cytochrome c oxidase (COX) activity using the transgenic APPSWE mouse model of AD bred to double melatonin receptor (MT1 and MT2) knockout mice. COX activity declined with aging in control mice, but increased with aging in AD mice, most likely as a response to mitochondrial reactive oxygen species (ROS) induced by amyloid-beta generated through APP proteolysis. Both effects were blunted by melatonin treatment. The effects of melatonin were partially dependent on the G-protein coupled melatonin receptors. We also used PD models to identify therapies that restore mitochondrial dysfunction. We showed that overexpression of wild-type alpha synuclein (α-syn) in human neuroblastoma M17 cells resulted in mitochondrial oxygen consumption deficits; similar to the levels observed when PD mutant forms (A30P α-syn, E46K α-syn, and, A53T α-syn) were overexpressed. Mitochondria from cells overexpressing α-syn were more sensitive to a high iron environment, mimicking the physiological conditions in which dopaminergic neurons are found. Diethyl oxaloacetate, succinate, and several amino acids were protective, suggesting the possibility for effective dietary interventions for PD. Lastly, we delineated the level of mitochondrial complex IV activity between gray and white matter in human cervical and lumbar spinal cord, as well as mitochondrial aggregation in the entire neurovascular units (NVU) as a consequence of ALS. At the conclusion of these projects a better understanding of the molecular mechanisms leading to mitochondrial dysfunction in AD, PD, ALS, and aging was gained and promising strategies to delay or reverse these dysfunctions were developed.
152

Sigma Receptor Activation Mitigates Toxicity Evoked by the Convergence of Ischemia, Acidosis and Amyloid-beta

Behensky, Adam Alexander 01 January 2015 (has links)
Stroke is the fifth leading cause of death in the United States and a major cause of long-term disability in industrialized countries. The core region of an ischemic stroke dies within minutes due to activation of necrotic pathways. Outside of this core region is the penumbral zone, where some perfusion is maintained via collateral arteries. Delayed cell death occurs in this area due to the triggering of apoptotic mechanisms, which expands the ischemic injury over time. The cellular and molecular events that produce the expansion of the ischemic core continue to be poorly understood. The increases in the amyloid precursor protein and pathogenic secretases lead to the increase in amyloid-β (Aβ) production. The relatively small amount of research in this area has hampered development of stroke therapy designed to prevent neuronal and glial cell degeneration in the penumbra. Currently, there is a significant lack of therapeutic options for acute ischemic stroke, and no drug has been approved for treating patients at delayed time points (≥ 4.5 hr post-stroke). Afobazole, an anxiolytic currently used clinically in Russia, has been shown to reduce neuronal and glial cell injury in vitro following ischemia, both of which have been shown to play important roles following an ischemic stroke. Treatment with afobazole decreased microglial activation in response to ATP and Aβ, as indicated by reduced membrane ruffling and cell migration. Prolonged exposure of microglia to ischemia or Aβ conditions resulted in glial cell death that was associated with increased expression of the pro-apoptotic protein, Bax, the death protease, caspase-3 and a reduced expression in Bcl-2. Co-application of afobazole decreased the number of cells expressing both Bax and caspase-3, while increasing the cells expressing Bcl-2 resulting in a concomitant enhancement in cell survival. While afobazole inhibited activation of microglia cells by Aβ25-35, it preserved normal functional responses in these cells following exposure to the amyloid peptide. Intracellular calcium increases induced by ATP were depressed in microglia after 24 hr exposure to Aβ25-35. However, co-incubation with afobazole returned these responses to near control levels. Therefore, stimulation of sigma-1 and sigma-2 receptors by afobazole prevents Aβ25-35 activation of microglia and inhibits Aβ25-35-associated cytotoxicity. Examining the molecular mechanisms involved in the increased neuronal survival demonstrates that ischemia or Aβ results in an increased expression of the pro-apoptotic protein Bax and the death protease caspase-3, while at the same time decreasing expression of the anti-apoptotic protein, Bcl-2. However, unlike observations made with microglia, afobazole was unable to modulate this ischemia-induced expression, but was able to modulate Aβ-induced expression of apoptotic proteins while still rescuing neurons from death. Additional experiments were carried out to understand this disparity between the failures of afobazole to prevent the up-regulation of pro-apoptotic genes while retaining the ability to mitigate neuronal death. Although the neurons were still alive they were in a senescent state and were unresponsive to depolarization by high K+. However, these findings are still positive due to the ability of afobazole to delay neuron death, thus minimalizing the toxic environment of the penumbra. These comorbidities of ischemia and Aβ toxicity may lead to potentiated responses and increase the risk for various vascular dementias. It was of particular interest to study how the convergence of ischemia, acidosis and Aβ influence cellular activity and survival within core and penumbral regions. Application of Aβ increased the [Ca2+]i overload produced by concurrent ischemia + acidosis application in isolated cortical neurons. We found that the acid-sensing ion channels 1a (ASIC1a) are involved in the potentiation of [Ca2+]i overload induced by Aβ. Furthermore, afobazole (100 uM) abolished Aβ potentiation of ischemia + acidosis evoked [Ca2+]i overload, which may represent a therapeutic strategy for mitigating injury produced by Aβ and stroke.
153

Investigation of neuronal apoptosis and autophagy in beta-amyloid peptide toxicity

Cheung, Yuen-ting., 張婉婷. January 2009 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
154

Engineering of Affibody molecules targeting the Alzheimer’s-related amyloid β peptide

Lindberg, Hanna January 2015 (has links)
<p>QC 20150922</p>
155

Über die Interaktionen des zellulären Prion-Proteins (PrPc) mit relevanten Proteinen der Alzheimer Erkrankung / The interaktion of the cellular prion protein (PrPc) with relevant proteins of Alzheimer's disease

Maibach-Wulf, Katharina 15 July 2014 (has links)
No description available.
156

Modeling Peptide-binding Interactions and Polymer-binding Interactions and their Role in Mass Spectrometry

Martineau, Eric 21 May 2013 (has links)
As a first project, collision-induced dissociation experiments were carried out using electrospray ionisation mass spectrometry on gas phase complexes involving different poly(methylmetacrylate) oligomers with three amino acids: glycine, leucine, and phenylalanine. After acquiring breakdown diagrams, RRKM modeling was used to fit the experimental data in order to obtain the 0 K activation energy and the entropy of activation. These thermodynamic data were then used to understand the competing dissociation channels observed (except for gas phase complexes involving glycine that had only one dissociation channel). Molecular dynamics simulated annealing calculations were carried on the gas phase complexes to understand further the energetic and entropic effects involved as well as the 3D conformation of these complexes. Valuable insight information was found on the 3D conformations, on a qualitative level. Using rotational constants and vibrational harmonic frequencies, it was possible to evaluate the entropy variation between the experimentally observed competing channels. Reasonable agreement was found between the experimental and theoretical variations of entropies. Finally, the proton affinity of poly(methylmetacrylate) oligomers is being discussed. Even though no absolute values for the proton affinity were found, the experimental and computational results help to understand the variation that accompanies the oligomers length. The second project presents the development an efficient and reproducible screening method for identifying low molecular weight compounds that bind to amyloid beta peptides (Abeta) peptides using electrospray ionization mass spectrometry (ESI-MS). Low molecular weight (LMW) compounds capable of interacting with soluble Abeta may be able to modulate/inhibit the Abeta aggregation process and serve as potential disease-modifying agents for Alzheimer’s disease. The present approach was used to rank the binding affinity of a library of compounds to Abeta1-40 peptide. The results obtained show that low molecular weight compounds bind similarly to Abeta1-42, Abeta1-40, as well as Abeta1-28 peptides and they underline the critical role of Abeta peptide charge motif in binding at physiological pH. Finally, some elements of structure-activity relationship (SAR) involved in the binding affinity of homotaurine to soluble Abeta peptides are discussed. As a third project, the gas phase binding of small molecules to the Abeta1-40 peptide generated by electrospray ionization has been explored with collision-induced dissociation mass spectrometry and kinetic rate theory. This project presents a simple procedure used to theoretically model the experimental breakdown diagrams for the Abeta1-40 peptide complexed with a series of aminosulfonate small molecules, namely homotaurine, 3-cyclohexylamino-2-hydroxy-1-propanesulfonic acid (CAPSO), 3-(1,3,4,9-tetrahydro-2H-beta-carbolin-2-yl) propane-1-sulfonic acid, 3-(1,3,4,9-tetrahydro-2H-beta-carbolin-2-yl)butane-1-sulfonic acid, and 3-(cyclohexylamino) propane-1-sulfonic acid. An alternative method employing an extrapolation procedure for the microcanonical rate constant, k(E), is also discussed.
157

Amyloid Precursor Protein-Dependent and -Independent Mechanisms in Hypoxia-Induced Axonopathy

Christianson, Melissa Gottron January 2012 (has links)
<p>Hypoxia is a profound stressor of the central nervous system implicated in numerous neurodegenerative diseases. While it is increasingly evident that the early effects of hypoxia cause impairment at the level of the axon, the precise mechanisms through which hypoxia compromises axonal structure and function remain unclear. However, links between hypoxia-induced axonopathic disease and the amyloid cascade, as well as the upregulation of amyloid precursor protein (APP) and amyloid beta (A&beta;) by hypoxic stress, give rise to the hypothesis that proteolytic cleavage of APP into A&beta; may be specifically responsible for axonopathy under conditions of hypoxia. </p><p>The goal of this dissertation was thus to understand dependence of hypoxia-induced axonal morphological and functional impairment on APP cleavage and the production of A&beta;. I have developed a model of hypoxia-induced axonopathy in retinal explants. Using this model, I have experimentally addressed the core hypothesis that APP cleavage, and in particular the formation of A&beta;, is necessary and sufficient to mediate morphological and functional axonopathy caused by hypoxia. I have found that there is a dissociation between the mechanisms responsible for hypoxia-induced morphological and functional impairment of the axon in the explanted retina, with the former being dependent on APP-to-A&beta; processing and the latter likely being dependent on cleavage of a non-APP substrate by the enzyme BACE1. These findings shed light on mechanisms of hypoxia-induced axonopathy.</p> / Dissertation
158

Genetic Ablation of the Platelet Activating Factor Receptor Does Not Impair Learning and Memory in Wild-Type Mice or Alter Amyloid Plaque Number in a Transgenic Model of Alzheimer’s Disease

Peshdary, Vian 25 January 2012 (has links)
We have recently established that aberrant alkylacylglycerophosphocholine metabolism results in the increased tissue concentration of platelet activating factors (PAFs) in the temporal cortex of Alzheimer Disease (AD) patients and in TgCRND8 mice over-expressing mutant human amyloid precursor protein. PAF lipids activate a G-protein coupled receptor (PAFR) reported to be expressed by microglia and subsets of neurons in rat. It is not known whether this same expression pattern is recapitulated in mice however, as the expression has only been inferred by use of pharmacological PAFR antagonists, many of which impact on both PAFR-dependent and PAFR-independent signalling pathways. PAFR plays a role in long term potentiation (LTP) induction in rats. PAFR has also been implicated in behavioural indices of spatial learning and memory in rats. Contradictory reports using mice provide ambiguity regarding the role of PAFR in LTP induction in mice. To assess whether PAFR is expressed in murine neurons, I localized PAFR mRNA in wild-type C57BL/6 mice using PAFR KO mice as a negative control. I further showed that the loss of PAFR did not impair learning and memory although this assessment must be considered preliminary as the behavioural test employed was not optimized to detect changes in learning and memory of C57BL/6 mice over time adequately.Finally, I showed that the loss of PAFR in TgCRND8 mouse model of AD had no impact upon Aβ plaque number. My observations suggest that PAFR is restricted to microglial-like cells in mouse hippocampus and as such, it may not play a role in learning and memory.
159

A Computational Study of the Role of Hydration in the Assembly of Collagen and Other Bio laments

Mayuram Ravikumar, Krishnakumar 2011 August 1900 (has links)
Hydration is known to be crucial in biomolecular interactions including ligand binding and self-assembly. In our earlier studies we have shown the key role of water in stabilizing the specific parts of the collagen triple helix depending on the imino acid content. We further showed that the primary hydration shell around collagen could act as a lubricating layer aiding in collagen assembly. But key details on the structure and dynamics of water near protein surfaces and its role in protein-protein interactions remain unclear. In the current study we have developed a novel method to analyze hydration maps around peptides at 1-A resolution around three self-assembling lament systems with known structures, that respectively have hydrated (collagen), dry non-polar and dry polar (amyloid) interfaces. Using computer simulations, we calculate local hydration maps and hydration forces. We find that the primary hydration shells are formed all over the surface, regardless of the types of the underlying amino acids. The weakly oscillating hydration force arises from coalescence and depletion of hydration shells as two laments approach, whereas local water diffusion, orientation, or hydrogen bonding events have no direct effect. Hydration forces between hydrated, polar, and non-polar interfaces differ in the amplitude and phase of the oscillation relative to the equilibrium surface separation. Therefore, water-mediated interactions between these protein surfaces ranging in character from ‘hydrophobic’ to ‘hydrophilic,’ have a common molecular origin based on the robustly formed hydration shells, which is likely applicable to a broad range of biomolecular assemblies whose interfacial geometry is similar in length scale to those of the present study. In a related study through simulations we show that the rate of tissue optical clearing by chemical agents correlated with the preferential formation of hydrogen bond bridges between agent and collagen. Hydrogen bond bridge formation disrupts the collagen hydration layer and facilitates replacement by a chemical agent to destabilize the tertiary structure of collagens thereby reducing light scattering. This study suggests that the clearing ability of an alcohol not only depends on its molecular size, but also on the position of hydroxyl groups on its backbone.
160

Secreted amyloid precursor protein-alpha modulates hippocampal long-term potentiation, in vivo

Taylor, Chanel Jayne, n/a January 2008 (has links)
Alzheimer�s disease (AD) is a neurodegenerative disorder, charaeterised by progressive loss of memory. It is important to understand what factors initiate the onset of AD so that effective therapeutic treatments can be developed to target the precise mechanisms that initiate this disease. Currently, synaptic dysfunction is widely believed to be the first significant alteration preceding the onset of AD, and is thought to be initiated by an intracellular accumulation of amyloid-β (Aβ), or a free radical-induced increase of oxidative stress. As Aβ levels rise during the onset of AD, a concomitant reduction of secreted amyloid precursor protein-α (sAPPα) is observed, as the two proteins exist in equilibrium. Intriguingly, the neuroprotective and neurotrophic properties of sAPPα indicate that it is intimately involved in the physiological pathways of the major hypotheses for the cause of AD, and may also be involved in the mechanisms that underlie learning and memory. Therefore, it is possible that during the onset of AD, the decrease of sAPPα may contribute to synaptic dysfunction by disrupting the mechanisms of synaptic plasticity. Long-term potentiation (LTP) is the leading experimental model for investigating the neural substrate of memory formation, and describes the molecular mechanisms that underlie an increase in the strength of synaptic transmission. The role sAPPα may play in the induction and maintenance of LTP has not previously been addressed in vivo. Therefore, the aim of this thesis was to investigate whether sAPPα affects the induction of LTP in the hippocampus of the anaesthetised rat. The present findings are the first to suggest that sAPPα may modulate the induction of LTP in vivo. Decreasing the function of endogenous sAPPα (with sAPPα-binding antibodies and a pharmacological inhibition of α-secretase) significantly reduced the magnitude of LTP induced in the dentate gyrus. Therefore, the reduction of sAPPα during AD is likely to have a detrimental impact on the mechanisms of synaptic plasticity, and by extension, learning and memory. The present investigation has also found that the application of recombinant, purified sAPPα to the rat hippocampus has an �inverted U-shaped� dose-response effect on the magnitude of LTP. Low concentrations of sAPPα significantly enhanced LTP, supporting previous findings that exogenous sAPPα can facilitate in vitro LTP and enhance memory performance in animals. On the other hand, comparatively high concentrations of sAPPα significantly decreased the magnitude of LTP. This observation is also consistent with previous findings, in which high concentrations of sAPPα have been shown to be less synaptogenic and memory enhancing than lower doses. These results are the first to suggest that sAPPα modulates in vivo synaptic plasticity, and have important implications for the development of strategies to treat AD.

Page generated in 0.0279 seconds