• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 3
  • Tagged with
  • 39
  • 39
  • 24
  • 18
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Representação geométrica de intervalos / Graphical approach to intervals

Franciosi, Beatriz Regina Tavares January 1999 (has links)
Neste trabalho e apresentada uma nova abordagem para a representação gráfica de intervalos. Segundo esta abordagem é possível realizar a análise visual de intervalos a partir da associação entre propriedades geométricas do piano cartesiano e de conjuntos de intervalos representados como pontos desse piano. Esta nova abordagem possibilita a representação da interpretação dual de intervalos, assim como a analise visual de relacionamentos em (IR, <=) e (IR, C). Neste contexto, a representação gráfica do conjunto de intervalos degenerados, representado pela reta y = x, constitui um caso especial desta representação,"o. Por sua vez, a relação (IR, representada pelo semiplano superior a reta y = x, denotado piano IR. A interpretação visual de operações intervalares é obtida diretamente através da aplicação da representação gráfica proposta. Além disto, operandos e operadores podem ser estudados diretamente a partir desta representação. Foram desenvolvidos experimentos de analise visual de intervalos utilizando a abordagem proposta e resultados bastante promissores foram obtidos. Estes experimentos possibilitaram a identificação de novas propriedades de intervalos assim como interpretações não usuais para operações intervalares. Esta representação pode ser utilizada também para observar o comportamento de seqüências de intervalos gerados a partir de programas baseado na aplicação da aritmética intervalar. Nesta caso, pode ser observado como os intervalos desta seqüência variam com relação ao seu ponto médio e o raio, assim como a relação entre eles. Esta representação foi utilizada com sucesso para obter a solução geométrica da equação intervalar afim e efetuando sua validação. Finalmente, analisamos a contribuição efetiva deste trabalho no contexto da aritmética intervalar. / This thesis presents a framework enabling the visual analysis of intervals, obtained by mapping geometric properties of the cartesian plane into interval sets to obtain a graphical representation. This new approach makes possible a dual interval representation and the immediate visual analysis of several relationships in (IR, <=) and (IR, C). In this sense, the set of degenerated intervals is a special case of this approach as they are represented by the straight line y=x. In turn, the order relation in (IR, C) is represented through the half-plane above the straight line y = x, denoted IR plane. Applying this framework, the visual interpretation of most interval operations is obtained directly from the graphical representation of the operands and the operations being studied. On the other hand, some experiments on interval visual analysis were developed with good final results. Thus, new properties and unusual interpretations for known operations can be developed with rather small effort. Moreover, this representation can be easily embedded into a running algorithm, to observe convergence and behavior of interval iterations, as one can easily see how intervals change with respect to midpoint and radius, as well as with respect to each other. The validation of this new approach was carried through the geometric solution of linear interval equations. This result was analyzed in order to verify the effective contribution of this geometrical representation in the context of interval arithmetic.
22

Uso efetivo da matemática intervalar em supercomputadores vetoriais / Effective use of interval mathematics on vector supercomputers

Diverio, Tiaraju Asmuz January 1995 (has links)
Este trabalho apresenta um estudo do uso da Matemática Intervalar na resolução de problemas em supercomputadores, através da biblioteca de rotinas intervalares denominada libavi.a (aritmética vetorial intervalar), proporcionando não só aumento de velocidade de processamento via vetorização, mas exatidão e controle de erros nos cálculos através do emprego da aritmética intervalar. Foram identificadas duas das barreiras que a resolução de problemas numéricos em computadores enfrenta. Estas barreiras se referem a qualidade do resultado e ao porte do problema a ser resolvido. Verificou-se a existência de uma grande lacuna entre o avanço tecnol6gico, incluindo o desenvolvimento de computadores cada vez mais rápidos, e poderosos e a qualidade com que os cálculos são feitos. Através dos supercomputadores (geralmente computadores vetoriais e/ou paralelos), os resultados são) obtidos com extrema rapidez, mas nem sempre se sabe quão confiáveis realmente são. Como a definição da aritmética da maquina ficava a cargo do fabricante, cada sistema tinha as suas próprias características e defeitos. Cálculos efetuados em diferentes maquinas raramente produziam resultados compatíveis. Então, em 1980, a IEEE adotou o padrão de aritmética binária de ponto-flutuante, conhecida como padrão IEEE 754. Isto foi um passo no sentido de se resolver a questão de qualidade numérica dos resultados, mas este padrão não especificou tudo. A pesquisa evoluiu para a proposta de uma aritmética de alta exatidão e alto desempenho, que tome disponível operações com intervalos e a própria matemática intervalar aos usuários do supercomputador vetorial Cray Y-MP2E. Como protótipo desta aritmética de alto desempenho, foi desenvolvido um estudo, uma especificação e, posteriormente, implementada uma biblioteca de rotinas intervalares no supercomputador Cray Y-MP2E, denominada libavi.a. 0 nome libavi.a significa biblioteca (lib) composta da aritm6tica vetorial intervalar (avi). 0 sufixo .a é o sufixo padrão de bibliotecas no Cray. Com a libavi.a definiu-se a aritm6tica de alto desempenho, composta do processamento de alto desempenho (vetorial) e da matemática intervalar. Não se tem a aritm6tica de alta exatidão e alto desempenho, pois no ambiente vetorial, como do supercomputador Cray Y-MP2E com a linguagem de programação Fortran 90, a aritm6tica não segue o padrão da IEEE 754 na especificação do tamanho da palavra nem na forma como os arredondamentos e operações aritméticas em ponto-flutuante efetuadas. Foi necessário desenvolver rotinas que simulassem Os arredondamentos direcionados e operações em ponto-flutuante com controle de erro de arredondamento. A biblioteca libavi.a é um conjunto de rotinas intervalares que reúne as características da matemática intervalar no ambiente do supercomputador vetorial Cray Y-MP. A libavi.a foi desenvolvida em Fortran 90, o que possibilitou as características de modularidade, sobrecarga de operadores e funções, uso de arrays dinâmicos na definição de vetores e matrizes e a definição de novos tipos de dados próprios a analise matemática. A biblioteca foi organizada em quatro módulos: básico (com 52 rotinas que implementam intervalos reais), mvi (com 151 rotinas sobre matrizes e vetores de intervalos reais), aplic (com 29 rotinas intervalares sobre aplicações da álgebra linear) e ci (com 58 rotinas que implementam intervalos complexos). O módulo básico contem a aritmética intervalar básica, sendo, por isso, utilizado por todos os demais. O módulo aplic contém os demais módulos, pois ele se utiliza deles. .O módulo de intervalos complexos, contém o módulo básico. Além da aritmética vetonal intervalar (operações, funções e avaliação de expressões), sentiu-se a necessidade de providenciar bibliotecas que tornassem disponíveis os métodos intervalares para usuários do Cray (na resolução de problemas). Inicialmente foi especificada a biblioteca cientifica aplicativa libselint.a, composta por algumas rotinas intervalares de resolução de equações algébricas e sistemas de equações lineares. Observa-se que desta biblioteca aplicativa foram implementadas apenas algumas rotinas visando verificar e validar o uso da biblioteca intervalar e da matemática intervalar em supercomputadores. Por fim, foram desenvolvidos vários testes que verificaram a biblioteca de rotinas intervalares quanto a sua correção e compatibilidade com a documentação. Todos os resultados obtidos através de programas que utilizavam a libavi.a foram comparados com os resultados produzidos por programas análogos em Pascal XSC. A validação do uso da Matemática Intervalar no supercomputador vetorial se deu através da resolução de problemas numéricos implementados em Fortran 90, utilizando a libavi.a, e seus resultados foram confrontados com o de outras bibliotecas. / In this study a practical use of Interval Mathematics, for the resolution of numerical problems, through a new tool, libavi.a (Vector and Interval Arithmetic Library) is presented. A new tool for resolution of numerical problems in supercomputers is proposed, providing increase in processing speed through vectorization and adding accuracy and error control at the performance of interval arithmetic. Two limitations of numerical problems resolution in computers were identified. These limitations are related to the quality of results and the size of the problem to be solved. A big distance between technology improvement, including development of more powerful and faster computers, and the quality of calculus performance is the consequence of this progress. Among supercomputers (vectorial and parallel computers) the results are quickly obtained, but we may not know how exact they are. Since the definition of machine arithmetic was in charge of makers, each system has its own characteristics and problems. Compatible or equal results are rarely produced when calculus are made in different machines. Then in 1980, the IEEE adopted the pattern of binary floating-point arithmetic, known as pattern IEEE754. This was one step in the correct direction for solving the matter of results numerical quality. Anyway this pattern was incomplete. Research has come to a development proposal of a high accuracy and high performance arithmetic, which supports interval operations and interval mathematics itself for the user of Cray supercomputer. A study and specification were developed as a prototype application of this definition of high performance arithmetic. Later also a design and implementation of the library of interval routines programmed in FORTRAN 90 were made on Cray Y-MP supercomputer environment, called libavi.a. The name libavi.a means library (lib) composed of vector interval arithmetic (avi, in Portuguese). The suffix .a is the suffix of libraries on Cray. High performance arithmetic was defined for libavi.a, which is composed of high performance processing and interval mathematics. The high accuracy and high performance arithmetic was not possible because, on Cray Y-MP supercomputer environment with the programming language FORTRAN 90, the native arithmetic is not according to the pattern of IEEE 754. The specification of the word size, the way that the arithmetic operations in floating-point are made and the kind of roundings are different from the pattern. It was necessary to simulate these operations and roundings. The library libavi is a set of interval routines that meets characteristics of interval mathematics in the environment of vector supercomputer Cray Y-MP. It was developed in FORTRAN 90, making available some characteristics as modularity, overloading of operators and functions, the use of dynamic arrays in the definition of vectors and matrix and the definition of new kinds of data from analysis mathematics. It was organized in four modules: basic (with 52 routines of real intervals), my/ (with 151 routines over real interval matrix and vectors), aplic (with 29 routines over linear algebra) and ci (with 58 routines of complex intervals). The basic module contains the basic interval arithmetic and therefore it is used by all other modules. The aplic module contains the three other modules, because it uses their routines. Then the complex interval module contains the basic module. Finally, some tests are made to verify the correctness of interval routines library and compatibility with its documentation. All the results from FORTRAN and Pascal XSC programs for the same problems were compared. The validation of interval mathematics use on Cray supercomputer was made through the resolution of numerical problems programmed in FORTRAN 90, using the library libavi and the results was compared with other libraries.
23

Uma representação construtiva global para sistemas ordenados de segunda ordem em espaços coerentes intervalares bi-estruturados, com aplicação em matemática intervalar / A global constructive representation of second order ordered systems using bi-structured interval coherence spaces, with an application in interval mathematics

Dimuro, Gracaliz Pereira January 1998 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia para a obtenção de representações construtivas de sistemas ordenados de 2ª ordem, baseadas em estruturas de espaços coerentes, com aplicação fundamental na Computação Científica e Matemática Intervalar. Obtêm assim uma representação global para os objetos ditos infinitos relativamente ao conteúdo de informação, como números reais e intervalos reais, de tal forma que possam ser definidos modelos semânticos adequados para os processos computacionais envolvendo tais objetos. Esta representação construtiva é denominada de global, pois é realizada em dois níveis distinguíveis, compreendendo não somente a construção interna dos objetos, no contexto de uma da estrutura de informação, mas também sua estrutura externa de aplicação. A estrutura de informação tem caráter compatível com uma abordagem domínio-teorética, e a estrutura de aplicação e determinada pelo use pretendido do sistema representado. Existe um relacionamento entre os dois níveis de construção, garantindo que cada componente da estrutura de aplicação tenha uma representação interna na estrutura de informação. Os sistemas de representação global resultantes são denominados então espaços coerentes bi-estruturados, e tem a característica adicional de serem gerados por um sistema ordenado basico de universo enumerável. A estrutura de informação é um espaço coerente, com funções lineares e uma estrutura topológica de informação compatível. A estrutura de aplicação - algébrica, de ordem, relacional, funcional, de medidas, topológica, dentre outras - é obtida por um processo construtivo a partir da estrutura do sistema basico. Um espaço coerente bi-estruturado, obtido por esse processo de construção, é a representação global de um dado sistema ordenado de 2ª ordem quando possível recuperar este sistema através do subsistema dos objetos totais do espaço, pela determinação de isomorfismos para a estrutura de aplicação. Da mesma forma, estabelecendo também isomorfismos para o subsistema dos intervalos de elementos do conjunto universo do sistema que esta sendo representado, esse subsistema pode ser recuperado como o subsistema dos objetos quasi-totais do espaço coerente. Apresenta-se também uma abordagem categórica para o processo de construção global, mostrando se que ele determina uma adjunção entre duas subcategorias da categoria SO2 dos sistemas ordenados de 2ª ordem A metodologia proposta se mostrou particularmente interessante na construção do conjunto dos números reais e do conjunto de intervalos reais. Para estes sistemas introduziu-se também uma subestrutura elementar de medidas, pela definição, de forma generalizada, das funções valor absoluto, distância e diâmetro. Foi desenvolvida uma estrutura topológica para os espaços coerentes bi-estruturados, que caracteriza-se também por apresentar dois níveis que se inter-relacionam. Para obter uma caracterização topológica de informação desenvolveu-se a noção de espaços de vizinhanças lineares. No sentido de se obter a caracterização topológica de aplicação, obteve-se, em cada etapa da construção, um espaço de vizinhanças gerado pela função distância generalizada com uma topologia de aplicação associada. Conexões entre as representações de reais e de intervalos de reais e aspectos de computabilidade são referidas de modo preliminar, sugerindo-se este tema como trabalho futuro. Possíveis aplicações dos espaços coerentes bi-estruturados e do processo de construção global a outras áreas da Ciência da Computação são indicadas no final do trabalho. / The aim of this work is to develop a methodology to obtain constructive representations of second order ordered systems, based on coherence space structures, with the main application in Scientific Computation and Interval Mathematics. A global representation for the so-called infinite objects considering the information content they represent, in particularly real numbers and real intervals, is obtained, so that suitable semantical models for real and interval computational processes can be provided. This constructive representation is said to be global. since it is performed in two distinguished levels, dealing with the internal construction of the objects, in the context of an information structure, and, on the other hand, building an external application structure. The information structure is compatible with a domain-theoretic approach, and the application structure is established according the intended usage of the represented system. There exists a relationship between the two levels of the construction, guaranteeing that each component of the application structure should have an internal representation in the information structure. The resulting global representation systems are called bi-structured coherence spaces, and they have the additional feature of being generated by a basic ordered system having a denumerable universe. The information structure is a coherence space endowed with linear functions and a compatible information topological structure. The (algebraic, ordered, relational, functional, measure, topological, etc.) application structure is obtained by the construction process, considering the structure of the basic system as the start point. A bi-structured coherence space, obtained by this construction process, is said to be the global representation of a given second order ordered system if it is possible to recover the latter by the subsystem of the total objects of the former, defining isomorphisms related to the application structure. Following the same pattern, establishing isomorphisms for the subsystem of the intervals of elements of the represented system, it is possible to recover it as the subsystem of quasi-total objects of the bi-structured coherence space. A categorical approach is also presented and it is shown that the global construction process determines an adjunction between two subcategories of the category SO2 of the second order ordered systems. The proposed methodology was shown to be particularly interesting when constructing the sets of real numbers and real intervals. For these systems, an elementary measure structure was introduced in a generalised approach, defining generalised distance, diameter and absolute value functions. The bi-structured coherence spaces were given an interrelated two-level topological characterisation. In order to obtain an information topological characterisation the concept of linear neighbourhood systems was introduced. For the application topological characterisation, at each step of the construction, a neighbourhood system generated by the generalised distance function, with an associated topology, was defined. A brief analysis concerning the connections among other representations of real and real intervals and computability aspects is presented. Other possible applications in Computer Science are indicated.
24

Uso efetivo da matemática intervalar em supercomputadores vetoriais / Effective use of interval mathematics on vector supercomputers

Diverio, Tiaraju Asmuz January 1995 (has links)
Este trabalho apresenta um estudo do uso da Matemática Intervalar na resolução de problemas em supercomputadores, através da biblioteca de rotinas intervalares denominada libavi.a (aritmética vetorial intervalar), proporcionando não só aumento de velocidade de processamento via vetorização, mas exatidão e controle de erros nos cálculos através do emprego da aritmética intervalar. Foram identificadas duas das barreiras que a resolução de problemas numéricos em computadores enfrenta. Estas barreiras se referem a qualidade do resultado e ao porte do problema a ser resolvido. Verificou-se a existência de uma grande lacuna entre o avanço tecnol6gico, incluindo o desenvolvimento de computadores cada vez mais rápidos, e poderosos e a qualidade com que os cálculos são feitos. Através dos supercomputadores (geralmente computadores vetoriais e/ou paralelos), os resultados são) obtidos com extrema rapidez, mas nem sempre se sabe quão confiáveis realmente são. Como a definição da aritmética da maquina ficava a cargo do fabricante, cada sistema tinha as suas próprias características e defeitos. Cálculos efetuados em diferentes maquinas raramente produziam resultados compatíveis. Então, em 1980, a IEEE adotou o padrão de aritmética binária de ponto-flutuante, conhecida como padrão IEEE 754. Isto foi um passo no sentido de se resolver a questão de qualidade numérica dos resultados, mas este padrão não especificou tudo. A pesquisa evoluiu para a proposta de uma aritmética de alta exatidão e alto desempenho, que tome disponível operações com intervalos e a própria matemática intervalar aos usuários do supercomputador vetorial Cray Y-MP2E. Como protótipo desta aritmética de alto desempenho, foi desenvolvido um estudo, uma especificação e, posteriormente, implementada uma biblioteca de rotinas intervalares no supercomputador Cray Y-MP2E, denominada libavi.a. 0 nome libavi.a significa biblioteca (lib) composta da aritm6tica vetorial intervalar (avi). 0 sufixo .a é o sufixo padrão de bibliotecas no Cray. Com a libavi.a definiu-se a aritm6tica de alto desempenho, composta do processamento de alto desempenho (vetorial) e da matemática intervalar. Não se tem a aritm6tica de alta exatidão e alto desempenho, pois no ambiente vetorial, como do supercomputador Cray Y-MP2E com a linguagem de programação Fortran 90, a aritm6tica não segue o padrão da IEEE 754 na especificação do tamanho da palavra nem na forma como os arredondamentos e operações aritméticas em ponto-flutuante efetuadas. Foi necessário desenvolver rotinas que simulassem Os arredondamentos direcionados e operações em ponto-flutuante com controle de erro de arredondamento. A biblioteca libavi.a é um conjunto de rotinas intervalares que reúne as características da matemática intervalar no ambiente do supercomputador vetorial Cray Y-MP. A libavi.a foi desenvolvida em Fortran 90, o que possibilitou as características de modularidade, sobrecarga de operadores e funções, uso de arrays dinâmicos na definição de vetores e matrizes e a definição de novos tipos de dados próprios a analise matemática. A biblioteca foi organizada em quatro módulos: básico (com 52 rotinas que implementam intervalos reais), mvi (com 151 rotinas sobre matrizes e vetores de intervalos reais), aplic (com 29 rotinas intervalares sobre aplicações da álgebra linear) e ci (com 58 rotinas que implementam intervalos complexos). O módulo básico contem a aritmética intervalar básica, sendo, por isso, utilizado por todos os demais. O módulo aplic contém os demais módulos, pois ele se utiliza deles. .O módulo de intervalos complexos, contém o módulo básico. Além da aritmética vetonal intervalar (operações, funções e avaliação de expressões), sentiu-se a necessidade de providenciar bibliotecas que tornassem disponíveis os métodos intervalares para usuários do Cray (na resolução de problemas). Inicialmente foi especificada a biblioteca cientifica aplicativa libselint.a, composta por algumas rotinas intervalares de resolução de equações algébricas e sistemas de equações lineares. Observa-se que desta biblioteca aplicativa foram implementadas apenas algumas rotinas visando verificar e validar o uso da biblioteca intervalar e da matemática intervalar em supercomputadores. Por fim, foram desenvolvidos vários testes que verificaram a biblioteca de rotinas intervalares quanto a sua correção e compatibilidade com a documentação. Todos os resultados obtidos através de programas que utilizavam a libavi.a foram comparados com os resultados produzidos por programas análogos em Pascal XSC. A validação do uso da Matemática Intervalar no supercomputador vetorial se deu através da resolução de problemas numéricos implementados em Fortran 90, utilizando a libavi.a, e seus resultados foram confrontados com o de outras bibliotecas. / In this study a practical use of Interval Mathematics, for the resolution of numerical problems, through a new tool, libavi.a (Vector and Interval Arithmetic Library) is presented. A new tool for resolution of numerical problems in supercomputers is proposed, providing increase in processing speed through vectorization and adding accuracy and error control at the performance of interval arithmetic. Two limitations of numerical problems resolution in computers were identified. These limitations are related to the quality of results and the size of the problem to be solved. A big distance between technology improvement, including development of more powerful and faster computers, and the quality of calculus performance is the consequence of this progress. Among supercomputers (vectorial and parallel computers) the results are quickly obtained, but we may not know how exact they are. Since the definition of machine arithmetic was in charge of makers, each system has its own characteristics and problems. Compatible or equal results are rarely produced when calculus are made in different machines. Then in 1980, the IEEE adopted the pattern of binary floating-point arithmetic, known as pattern IEEE754. This was one step in the correct direction for solving the matter of results numerical quality. Anyway this pattern was incomplete. Research has come to a development proposal of a high accuracy and high performance arithmetic, which supports interval operations and interval mathematics itself for the user of Cray supercomputer. A study and specification were developed as a prototype application of this definition of high performance arithmetic. Later also a design and implementation of the library of interval routines programmed in FORTRAN 90 were made on Cray Y-MP supercomputer environment, called libavi.a. The name libavi.a means library (lib) composed of vector interval arithmetic (avi, in Portuguese). The suffix .a is the suffix of libraries on Cray. High performance arithmetic was defined for libavi.a, which is composed of high performance processing and interval mathematics. The high accuracy and high performance arithmetic was not possible because, on Cray Y-MP supercomputer environment with the programming language FORTRAN 90, the native arithmetic is not according to the pattern of IEEE 754. The specification of the word size, the way that the arithmetic operations in floating-point are made and the kind of roundings are different from the pattern. It was necessary to simulate these operations and roundings. The library libavi is a set of interval routines that meets characteristics of interval mathematics in the environment of vector supercomputer Cray Y-MP. It was developed in FORTRAN 90, making available some characteristics as modularity, overloading of operators and functions, the use of dynamic arrays in the definition of vectors and matrix and the definition of new kinds of data from analysis mathematics. It was organized in four modules: basic (with 52 routines of real intervals), my/ (with 151 routines over real interval matrix and vectors), aplic (with 29 routines over linear algebra) and ci (with 58 routines of complex intervals). The basic module contains the basic interval arithmetic and therefore it is used by all other modules. The aplic module contains the three other modules, because it uses their routines. Then the complex interval module contains the basic module. Finally, some tests are made to verify the correctness of interval routines library and compatibility with its documentation. All the results from FORTRAN and Pascal XSC programs for the same problems were compared. The validation of interval mathematics use on Cray supercomputer was made through the resolution of numerical problems programmed in FORTRAN 90, using the library libavi and the results was compared with other libraries.
25

Uma representação construtiva global para sistemas ordenados de segunda ordem em espaços coerentes intervalares bi-estruturados, com aplicação em matemática intervalar / A global constructive representation of second order ordered systems using bi-structured interval coherence spaces, with an application in interval mathematics

Dimuro, Gracaliz Pereira January 1998 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia para a obtenção de representações construtivas de sistemas ordenados de 2ª ordem, baseadas em estruturas de espaços coerentes, com aplicação fundamental na Computação Científica e Matemática Intervalar. Obtêm assim uma representação global para os objetos ditos infinitos relativamente ao conteúdo de informação, como números reais e intervalos reais, de tal forma que possam ser definidos modelos semânticos adequados para os processos computacionais envolvendo tais objetos. Esta representação construtiva é denominada de global, pois é realizada em dois níveis distinguíveis, compreendendo não somente a construção interna dos objetos, no contexto de uma da estrutura de informação, mas também sua estrutura externa de aplicação. A estrutura de informação tem caráter compatível com uma abordagem domínio-teorética, e a estrutura de aplicação e determinada pelo use pretendido do sistema representado. Existe um relacionamento entre os dois níveis de construção, garantindo que cada componente da estrutura de aplicação tenha uma representação interna na estrutura de informação. Os sistemas de representação global resultantes são denominados então espaços coerentes bi-estruturados, e tem a característica adicional de serem gerados por um sistema ordenado basico de universo enumerável. A estrutura de informação é um espaço coerente, com funções lineares e uma estrutura topológica de informação compatível. A estrutura de aplicação - algébrica, de ordem, relacional, funcional, de medidas, topológica, dentre outras - é obtida por um processo construtivo a partir da estrutura do sistema basico. Um espaço coerente bi-estruturado, obtido por esse processo de construção, é a representação global de um dado sistema ordenado de 2ª ordem quando possível recuperar este sistema através do subsistema dos objetos totais do espaço, pela determinação de isomorfismos para a estrutura de aplicação. Da mesma forma, estabelecendo também isomorfismos para o subsistema dos intervalos de elementos do conjunto universo do sistema que esta sendo representado, esse subsistema pode ser recuperado como o subsistema dos objetos quasi-totais do espaço coerente. Apresenta-se também uma abordagem categórica para o processo de construção global, mostrando se que ele determina uma adjunção entre duas subcategorias da categoria SO2 dos sistemas ordenados de 2ª ordem A metodologia proposta se mostrou particularmente interessante na construção do conjunto dos números reais e do conjunto de intervalos reais. Para estes sistemas introduziu-se também uma subestrutura elementar de medidas, pela definição, de forma generalizada, das funções valor absoluto, distância e diâmetro. Foi desenvolvida uma estrutura topológica para os espaços coerentes bi-estruturados, que caracteriza-se também por apresentar dois níveis que se inter-relacionam. Para obter uma caracterização topológica de informação desenvolveu-se a noção de espaços de vizinhanças lineares. No sentido de se obter a caracterização topológica de aplicação, obteve-se, em cada etapa da construção, um espaço de vizinhanças gerado pela função distância generalizada com uma topologia de aplicação associada. Conexões entre as representações de reais e de intervalos de reais e aspectos de computabilidade são referidas de modo preliminar, sugerindo-se este tema como trabalho futuro. Possíveis aplicações dos espaços coerentes bi-estruturados e do processo de construção global a outras áreas da Ciência da Computação são indicadas no final do trabalho. / The aim of this work is to develop a methodology to obtain constructive representations of second order ordered systems, based on coherence space structures, with the main application in Scientific Computation and Interval Mathematics. A global representation for the so-called infinite objects considering the information content they represent, in particularly real numbers and real intervals, is obtained, so that suitable semantical models for real and interval computational processes can be provided. This constructive representation is said to be global. since it is performed in two distinguished levels, dealing with the internal construction of the objects, in the context of an information structure, and, on the other hand, building an external application structure. The information structure is compatible with a domain-theoretic approach, and the application structure is established according the intended usage of the represented system. There exists a relationship between the two levels of the construction, guaranteeing that each component of the application structure should have an internal representation in the information structure. The resulting global representation systems are called bi-structured coherence spaces, and they have the additional feature of being generated by a basic ordered system having a denumerable universe. The information structure is a coherence space endowed with linear functions and a compatible information topological structure. The (algebraic, ordered, relational, functional, measure, topological, etc.) application structure is obtained by the construction process, considering the structure of the basic system as the start point. A bi-structured coherence space, obtained by this construction process, is said to be the global representation of a given second order ordered system if it is possible to recover the latter by the subsystem of the total objects of the former, defining isomorphisms related to the application structure. Following the same pattern, establishing isomorphisms for the subsystem of the intervals of elements of the represented system, it is possible to recover it as the subsystem of quasi-total objects of the bi-structured coherence space. A categorical approach is also presented and it is shown that the global construction process determines an adjunction between two subcategories of the category SO2 of the second order ordered systems. The proposed methodology was shown to be particularly interesting when constructing the sets of real numbers and real intervals. For these systems, an elementary measure structure was introduced in a generalised approach, defining generalised distance, diameter and absolute value functions. The bi-structured coherence spaces were given an interrelated two-level topological characterisation. In order to obtain an information topological characterisation the concept of linear neighbourhood systems was introduced. For the application topological characterisation, at each step of the construction, a neighbourhood system generated by the generalised distance function, with an associated topology, was defined. A brief analysis concerning the connections among other representations of real and real intervals and computability aspects is presented. Other possible applications in Computer Science are indicated.
26

Uso efetivo da matemática intervalar em supercomputadores vetoriais / Effective use of interval mathematics on vector supercomputers

Diverio, Tiaraju Asmuz January 1995 (has links)
Este trabalho apresenta um estudo do uso da Matemática Intervalar na resolução de problemas em supercomputadores, através da biblioteca de rotinas intervalares denominada libavi.a (aritmética vetorial intervalar), proporcionando não só aumento de velocidade de processamento via vetorização, mas exatidão e controle de erros nos cálculos através do emprego da aritmética intervalar. Foram identificadas duas das barreiras que a resolução de problemas numéricos em computadores enfrenta. Estas barreiras se referem a qualidade do resultado e ao porte do problema a ser resolvido. Verificou-se a existência de uma grande lacuna entre o avanço tecnol6gico, incluindo o desenvolvimento de computadores cada vez mais rápidos, e poderosos e a qualidade com que os cálculos são feitos. Através dos supercomputadores (geralmente computadores vetoriais e/ou paralelos), os resultados são) obtidos com extrema rapidez, mas nem sempre se sabe quão confiáveis realmente são. Como a definição da aritmética da maquina ficava a cargo do fabricante, cada sistema tinha as suas próprias características e defeitos. Cálculos efetuados em diferentes maquinas raramente produziam resultados compatíveis. Então, em 1980, a IEEE adotou o padrão de aritmética binária de ponto-flutuante, conhecida como padrão IEEE 754. Isto foi um passo no sentido de se resolver a questão de qualidade numérica dos resultados, mas este padrão não especificou tudo. A pesquisa evoluiu para a proposta de uma aritmética de alta exatidão e alto desempenho, que tome disponível operações com intervalos e a própria matemática intervalar aos usuários do supercomputador vetorial Cray Y-MP2E. Como protótipo desta aritmética de alto desempenho, foi desenvolvido um estudo, uma especificação e, posteriormente, implementada uma biblioteca de rotinas intervalares no supercomputador Cray Y-MP2E, denominada libavi.a. 0 nome libavi.a significa biblioteca (lib) composta da aritm6tica vetorial intervalar (avi). 0 sufixo .a é o sufixo padrão de bibliotecas no Cray. Com a libavi.a definiu-se a aritm6tica de alto desempenho, composta do processamento de alto desempenho (vetorial) e da matemática intervalar. Não se tem a aritm6tica de alta exatidão e alto desempenho, pois no ambiente vetorial, como do supercomputador Cray Y-MP2E com a linguagem de programação Fortran 90, a aritm6tica não segue o padrão da IEEE 754 na especificação do tamanho da palavra nem na forma como os arredondamentos e operações aritméticas em ponto-flutuante efetuadas. Foi necessário desenvolver rotinas que simulassem Os arredondamentos direcionados e operações em ponto-flutuante com controle de erro de arredondamento. A biblioteca libavi.a é um conjunto de rotinas intervalares que reúne as características da matemática intervalar no ambiente do supercomputador vetorial Cray Y-MP. A libavi.a foi desenvolvida em Fortran 90, o que possibilitou as características de modularidade, sobrecarga de operadores e funções, uso de arrays dinâmicos na definição de vetores e matrizes e a definição de novos tipos de dados próprios a analise matemática. A biblioteca foi organizada em quatro módulos: básico (com 52 rotinas que implementam intervalos reais), mvi (com 151 rotinas sobre matrizes e vetores de intervalos reais), aplic (com 29 rotinas intervalares sobre aplicações da álgebra linear) e ci (com 58 rotinas que implementam intervalos complexos). O módulo básico contem a aritmética intervalar básica, sendo, por isso, utilizado por todos os demais. O módulo aplic contém os demais módulos, pois ele se utiliza deles. .O módulo de intervalos complexos, contém o módulo básico. Além da aritmética vetonal intervalar (operações, funções e avaliação de expressões), sentiu-se a necessidade de providenciar bibliotecas que tornassem disponíveis os métodos intervalares para usuários do Cray (na resolução de problemas). Inicialmente foi especificada a biblioteca cientifica aplicativa libselint.a, composta por algumas rotinas intervalares de resolução de equações algébricas e sistemas de equações lineares. Observa-se que desta biblioteca aplicativa foram implementadas apenas algumas rotinas visando verificar e validar o uso da biblioteca intervalar e da matemática intervalar em supercomputadores. Por fim, foram desenvolvidos vários testes que verificaram a biblioteca de rotinas intervalares quanto a sua correção e compatibilidade com a documentação. Todos os resultados obtidos através de programas que utilizavam a libavi.a foram comparados com os resultados produzidos por programas análogos em Pascal XSC. A validação do uso da Matemática Intervalar no supercomputador vetorial se deu através da resolução de problemas numéricos implementados em Fortran 90, utilizando a libavi.a, e seus resultados foram confrontados com o de outras bibliotecas. / In this study a practical use of Interval Mathematics, for the resolution of numerical problems, through a new tool, libavi.a (Vector and Interval Arithmetic Library) is presented. A new tool for resolution of numerical problems in supercomputers is proposed, providing increase in processing speed through vectorization and adding accuracy and error control at the performance of interval arithmetic. Two limitations of numerical problems resolution in computers were identified. These limitations are related to the quality of results and the size of the problem to be solved. A big distance between technology improvement, including development of more powerful and faster computers, and the quality of calculus performance is the consequence of this progress. Among supercomputers (vectorial and parallel computers) the results are quickly obtained, but we may not know how exact they are. Since the definition of machine arithmetic was in charge of makers, each system has its own characteristics and problems. Compatible or equal results are rarely produced when calculus are made in different machines. Then in 1980, the IEEE adopted the pattern of binary floating-point arithmetic, known as pattern IEEE754. This was one step in the correct direction for solving the matter of results numerical quality. Anyway this pattern was incomplete. Research has come to a development proposal of a high accuracy and high performance arithmetic, which supports interval operations and interval mathematics itself for the user of Cray supercomputer. A study and specification were developed as a prototype application of this definition of high performance arithmetic. Later also a design and implementation of the library of interval routines programmed in FORTRAN 90 were made on Cray Y-MP supercomputer environment, called libavi.a. The name libavi.a means library (lib) composed of vector interval arithmetic (avi, in Portuguese). The suffix .a is the suffix of libraries on Cray. High performance arithmetic was defined for libavi.a, which is composed of high performance processing and interval mathematics. The high accuracy and high performance arithmetic was not possible because, on Cray Y-MP supercomputer environment with the programming language FORTRAN 90, the native arithmetic is not according to the pattern of IEEE 754. The specification of the word size, the way that the arithmetic operations in floating-point are made and the kind of roundings are different from the pattern. It was necessary to simulate these operations and roundings. The library libavi is a set of interval routines that meets characteristics of interval mathematics in the environment of vector supercomputer Cray Y-MP. It was developed in FORTRAN 90, making available some characteristics as modularity, overloading of operators and functions, the use of dynamic arrays in the definition of vectors and matrix and the definition of new kinds of data from analysis mathematics. It was organized in four modules: basic (with 52 routines of real intervals), my/ (with 151 routines over real interval matrix and vectors), aplic (with 29 routines over linear algebra) and ci (with 58 routines of complex intervals). The basic module contains the basic interval arithmetic and therefore it is used by all other modules. The aplic module contains the three other modules, because it uses their routines. Then the complex interval module contains the basic module. Finally, some tests are made to verify the correctness of interval routines library and compatibility with its documentation. All the results from FORTRAN and Pascal XSC programs for the same problems were compared. The validation of interval mathematics use on Cray supercomputer was made through the resolution of numerical problems programmed in FORTRAN 90, using the library libavi and the results was compared with other libraries.
27

Uma representação construtiva global para sistemas ordenados de segunda ordem em espaços coerentes intervalares bi-estruturados, com aplicação em matemática intervalar / A global constructive representation of second order ordered systems using bi-structured interval coherence spaces, with an application in interval mathematics

Dimuro, Gracaliz Pereira January 1998 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia para a obtenção de representações construtivas de sistemas ordenados de 2ª ordem, baseadas em estruturas de espaços coerentes, com aplicação fundamental na Computação Científica e Matemática Intervalar. Obtêm assim uma representação global para os objetos ditos infinitos relativamente ao conteúdo de informação, como números reais e intervalos reais, de tal forma que possam ser definidos modelos semânticos adequados para os processos computacionais envolvendo tais objetos. Esta representação construtiva é denominada de global, pois é realizada em dois níveis distinguíveis, compreendendo não somente a construção interna dos objetos, no contexto de uma da estrutura de informação, mas também sua estrutura externa de aplicação. A estrutura de informação tem caráter compatível com uma abordagem domínio-teorética, e a estrutura de aplicação e determinada pelo use pretendido do sistema representado. Existe um relacionamento entre os dois níveis de construção, garantindo que cada componente da estrutura de aplicação tenha uma representação interna na estrutura de informação. Os sistemas de representação global resultantes são denominados então espaços coerentes bi-estruturados, e tem a característica adicional de serem gerados por um sistema ordenado basico de universo enumerável. A estrutura de informação é um espaço coerente, com funções lineares e uma estrutura topológica de informação compatível. A estrutura de aplicação - algébrica, de ordem, relacional, funcional, de medidas, topológica, dentre outras - é obtida por um processo construtivo a partir da estrutura do sistema basico. Um espaço coerente bi-estruturado, obtido por esse processo de construção, é a representação global de um dado sistema ordenado de 2ª ordem quando possível recuperar este sistema através do subsistema dos objetos totais do espaço, pela determinação de isomorfismos para a estrutura de aplicação. Da mesma forma, estabelecendo também isomorfismos para o subsistema dos intervalos de elementos do conjunto universo do sistema que esta sendo representado, esse subsistema pode ser recuperado como o subsistema dos objetos quasi-totais do espaço coerente. Apresenta-se também uma abordagem categórica para o processo de construção global, mostrando se que ele determina uma adjunção entre duas subcategorias da categoria SO2 dos sistemas ordenados de 2ª ordem A metodologia proposta se mostrou particularmente interessante na construção do conjunto dos números reais e do conjunto de intervalos reais. Para estes sistemas introduziu-se também uma subestrutura elementar de medidas, pela definição, de forma generalizada, das funções valor absoluto, distância e diâmetro. Foi desenvolvida uma estrutura topológica para os espaços coerentes bi-estruturados, que caracteriza-se também por apresentar dois níveis que se inter-relacionam. Para obter uma caracterização topológica de informação desenvolveu-se a noção de espaços de vizinhanças lineares. No sentido de se obter a caracterização topológica de aplicação, obteve-se, em cada etapa da construção, um espaço de vizinhanças gerado pela função distância generalizada com uma topologia de aplicação associada. Conexões entre as representações de reais e de intervalos de reais e aspectos de computabilidade são referidas de modo preliminar, sugerindo-se este tema como trabalho futuro. Possíveis aplicações dos espaços coerentes bi-estruturados e do processo de construção global a outras áreas da Ciência da Computação são indicadas no final do trabalho. / The aim of this work is to develop a methodology to obtain constructive representations of second order ordered systems, based on coherence space structures, with the main application in Scientific Computation and Interval Mathematics. A global representation for the so-called infinite objects considering the information content they represent, in particularly real numbers and real intervals, is obtained, so that suitable semantical models for real and interval computational processes can be provided. This constructive representation is said to be global. since it is performed in two distinguished levels, dealing with the internal construction of the objects, in the context of an information structure, and, on the other hand, building an external application structure. The information structure is compatible with a domain-theoretic approach, and the application structure is established according the intended usage of the represented system. There exists a relationship between the two levels of the construction, guaranteeing that each component of the application structure should have an internal representation in the information structure. The resulting global representation systems are called bi-structured coherence spaces, and they have the additional feature of being generated by a basic ordered system having a denumerable universe. The information structure is a coherence space endowed with linear functions and a compatible information topological structure. The (algebraic, ordered, relational, functional, measure, topological, etc.) application structure is obtained by the construction process, considering the structure of the basic system as the start point. A bi-structured coherence space, obtained by this construction process, is said to be the global representation of a given second order ordered system if it is possible to recover the latter by the subsystem of the total objects of the former, defining isomorphisms related to the application structure. Following the same pattern, establishing isomorphisms for the subsystem of the intervals of elements of the represented system, it is possible to recover it as the subsystem of quasi-total objects of the bi-structured coherence space. A categorical approach is also presented and it is shown that the global construction process determines an adjunction between two subcategories of the category SO2 of the second order ordered systems. The proposed methodology was shown to be particularly interesting when constructing the sets of real numbers and real intervals. For these systems, an elementary measure structure was introduced in a generalised approach, defining generalised distance, diameter and absolute value functions. The bi-structured coherence spaces were given an interrelated two-level topological characterisation. In order to obtain an information topological characterisation the concept of linear neighbourhood systems was introduced. For the application topological characterisation, at each step of the construction, a neighbourhood system generated by the generalised distance function, with an associated topology, was defined. A brief analysis concerning the connections among other representations of real and real intervals and computability aspects is presented. Other possible applications in Computer Science are indicated.
28

Métodos intervalares para a resolução de sistemas de equações lineares / Interval methods for resolution of linear equation systems

Holbig, Carlos Amaral January 1996 (has links)
O estudo dos métodos intervalares é importante para a resolução de sistemas de equações lineares, pois os métodos intervalares produzem resultados dentro de limites confiáveis (do intervalo solução) e provam a existência ou não existência de soluções, portanto produzem resultados confiáveis, o que os métodos pontuais podem não proporcionar. Outro aspecto a destacar é o campo de utilizando de sistemas de equações lineares em problemas das engenharias e outras ciências, o que mostra a aplicabilidade desses métodos e por conseguinte a necessidade de elaboração de ferramentas que possibilitem a implementação desses métodos intervalares. O objetivo deste trabalho não é a elaboração de novos métodos intervalares, mas sim o de realizar uma descrição e implementação de alguns dos métodos intervalares encontrados na bibliografia pesquisada. A versão intervalar dos métodos pontuais não é simples e o calculo por métodos intervalares pode ser dispendioso, uma vez que se está tratando com vetores e matrizes de intervalos. A implementação dos métodos intervalares são foi possível graças a existência de ferramentas, como o compilador Pascal-XSC, que incorpora as suas características aspectos importantes como a aritmética intervalar, a verificação automática do resultado, o produto escalar Ótimo e a aritmética de alta exatidão. Este trabalho é dividido em duas etapas. A primeira apresenta um estudo dos métodos intervalares para a resolução de sistemas de equações lineares. São caracterizadas as metodologias de desenvolvimento desses métodos. Metodologias estas, que foram divididas em três grupos de métodos: métodos intervalares baseados em operações algébricas intervalares ou métodos diretos, métodos intervalares baseados em refinamento ou métodos híbridos e métodos intervalares baseados em interacões. São definidas as características, os métodos que as compõe e a aplicabilidade desses métodos na resolução de sistemas de equações lineares. A segunda etapa é caracterizada pela elaboração dos algoritmos referentes aos métodos intervalares estudados e sua respectiva implementação, dando origem a uma biblioteca aplicativa intervalar para a resolução de sistemas de equações lineares, implementada no PC-486 e utilizando o compilador Pascal-XSC. Para este desenvolvimento foi realizado, previamente, um estudo sobre este compilador e sobre bibliotecas disponíveis que são utilizadas na implementação da biblioteca aplicativa intervalar. A biblioteca selintp é organizada em quatro módulos: o módulo dirint (referente aos métodos diretos); o modulo refint (referente aos métodos baseados em refinamento); o módulo itrint (referente aos métodos iterativos) e o modulo equalg (para sistemas de equações de ordem 1). Por fim, através daquela biblioteca foram realizadas comparações entre os resultados obtidos (resultados pontuais, intervalares, seqüenciais e vetoriais) a rim de se realizar uma analise de desempenho quantitativa (exatidão) e uma comparação entre os resultados obtidos. Esses resultados sendo comparados com os obtidos com a biblioteca biblioteca esta que esta sendo desenvolvida para o ambiente do supercomputador Cray Y-MP do CESUP/UFRGS, como parte do projeto de Aritmética Vetorial Intervalar do Grupo de Matemática Computacional da UFRGS. / The study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
29

Métodos intervalares para a resolução de sistemas de equações lineares / Interval methods for resolution of linear equation systems

Holbig, Carlos Amaral January 1996 (has links)
O estudo dos métodos intervalares é importante para a resolução de sistemas de equações lineares, pois os métodos intervalares produzem resultados dentro de limites confiáveis (do intervalo solução) e provam a existência ou não existência de soluções, portanto produzem resultados confiáveis, o que os métodos pontuais podem não proporcionar. Outro aspecto a destacar é o campo de utilizando de sistemas de equações lineares em problemas das engenharias e outras ciências, o que mostra a aplicabilidade desses métodos e por conseguinte a necessidade de elaboração de ferramentas que possibilitem a implementação desses métodos intervalares. O objetivo deste trabalho não é a elaboração de novos métodos intervalares, mas sim o de realizar uma descrição e implementação de alguns dos métodos intervalares encontrados na bibliografia pesquisada. A versão intervalar dos métodos pontuais não é simples e o calculo por métodos intervalares pode ser dispendioso, uma vez que se está tratando com vetores e matrizes de intervalos. A implementação dos métodos intervalares são foi possível graças a existência de ferramentas, como o compilador Pascal-XSC, que incorpora as suas características aspectos importantes como a aritmética intervalar, a verificação automática do resultado, o produto escalar Ótimo e a aritmética de alta exatidão. Este trabalho é dividido em duas etapas. A primeira apresenta um estudo dos métodos intervalares para a resolução de sistemas de equações lineares. São caracterizadas as metodologias de desenvolvimento desses métodos. Metodologias estas, que foram divididas em três grupos de métodos: métodos intervalares baseados em operações algébricas intervalares ou métodos diretos, métodos intervalares baseados em refinamento ou métodos híbridos e métodos intervalares baseados em interacões. São definidas as características, os métodos que as compõe e a aplicabilidade desses métodos na resolução de sistemas de equações lineares. A segunda etapa é caracterizada pela elaboração dos algoritmos referentes aos métodos intervalares estudados e sua respectiva implementação, dando origem a uma biblioteca aplicativa intervalar para a resolução de sistemas de equações lineares, implementada no PC-486 e utilizando o compilador Pascal-XSC. Para este desenvolvimento foi realizado, previamente, um estudo sobre este compilador e sobre bibliotecas disponíveis que são utilizadas na implementação da biblioteca aplicativa intervalar. A biblioteca selintp é organizada em quatro módulos: o módulo dirint (referente aos métodos diretos); o modulo refint (referente aos métodos baseados em refinamento); o módulo itrint (referente aos métodos iterativos) e o modulo equalg (para sistemas de equações de ordem 1). Por fim, através daquela biblioteca foram realizadas comparações entre os resultados obtidos (resultados pontuais, intervalares, seqüenciais e vetoriais) a rim de se realizar uma analise de desempenho quantitativa (exatidão) e uma comparação entre os resultados obtidos. Esses resultados sendo comparados com os obtidos com a biblioteca biblioteca esta que esta sendo desenvolvida para o ambiente do supercomputador Cray Y-MP do CESUP/UFRGS, como parte do projeto de Aritmética Vetorial Intervalar do Grupo de Matemática Computacional da UFRGS. / The study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
30

Fundamentação computacional da matemática intervalar

Acioly, Benedito Melo January 1991 (has links)
A Matemática Intervalar se assenta em dois conceitos fundamentais, a propriedade da inclusão-monotonicidade de sua aritmética e uma topologia de Hausdorff definida no conjunto dos intervalos. A propriedade da inclusão-monotonicidade tem se revelado uma ferramenta útil na elaboração de algoritmos intervalares, enquanto a topologia de Hausdorff não consegue refletir as características lógicas daquela propriedade, comprometendo, desse modo, a construção de uma lógica cujo modelo seria a estrutura intervalar munida dessa topologia. Essa lógica seria necessária para fundamentação da matemática intervalar como uma teoria de algorítmos da análise real. Neste trabalho se mostra que o insucesso na construção dessa fundamentação se deve a incompatibilidade entre a propriedade da inclusão-monotonicidade e a topologia de Hausdorff. A partir dessa constatação se descarta essa topologia e define-se uma outra topologia - a topologia de Scott - que é compatível com essa propriedade, no sentido de que todo resultado obtido usando-se a lógica, isto é, a propriedade da inclusão-monotonicidade, obtém-se também usando-se a ferramenta topológica e reciprocamente. A teoria resultante da substituição da topologia de Hausdorff pela topologia de Scott tem duas características fundamentais. A Análise Funcional Intervalar resultante possui a maioria das propriedades interessantes da Análise Real, suprimindo, assim, as deficiências da Análise Intervalar anterior. A elaboração da propriedade da inclusão-monotoniciadade permite construir uma lógica geométrica e uma teoria lambda cujo modelo é essa nova matemática intervalar. Além disso, a partir dessa lógica e da teoria lambda se elabora uma teoria construtiva, como a teoria dos tipos de Martin-Löf, que permite se raciocinar com programas dessa matemática. Isso significa a possibilidade de se fazer correção automática de programas da matemática intervalar. Essa nova abordagem da matemática intervalar é desenvolvida pressupondo, apenas, o conceito de número racional, além, é claro, da linguagem da teoria dos conjuntos. Desse modo é construído o sistema intervalar de um modo análogo ao sistema real. Para isso é generalizado o conceito de corte de Dedekind, resultando dessa construção um sistema ordenado denominado de quasi-corpo, em contraste com o números reais cujo sistema é algébrico, o corpo dos números reais. Assim, no sistema intervalar a ordem é um conceito intrínseco ao sistema, diferentemente do sistema de números reais cuja a ordem não faz parte da álgebra do sistema. A lógica dessa nova matemática intervalar é uma lógica categórica. Isto significa que todo resultado obtido para domínios básicos se aplica para o produto cartesiano, união disjunta, o espaço de funções, etc., desses domínios. Isto simplifica consideravelmente a teoria. Um exemplo dessa simplificação é a definição de derivada nessa nova matemática intervalar, conceito ainda não bem definido na teoria intervalar clássica. / The Interval Mathematics is based on two fundamental concepts, the inclusion-monotonicity of its arithmetics and a Hausdorff topology defined on the interval set. The property of inclusion-monotonicity has risen as an useful tool for elaboration of interval algorithms. In contrast, because the Hausdorff topology does not reflect the logical features of that property, the interval mathematics did not, permit the elaboration of a logic whose model is this interval mathematics with that topology. This logic should be necessary to the foundation of the interval mathematics as a Real Analysis Theory of Algorithms. This thesis shows that the theory of algorithms refered above was not possible because of the incompatibility between the property of inclusion-monotonicity and the Hausdorff topology. By knowing the shortcoming of this topology, the next step is to set it aside and to define a new topology - the Scott topology - compatible with the refered property in the sense that every result, obtained via the logic is also obtainable via the topology and vice-versa. After changing the topology the resulting theory has two basic features. The Interval Functional Analysis has got the most, interesting properties belonging to Real Analysis, supressing the shortcomings of previous interval analysis. The elaboration of the inclusion-monotonicity property allows one to construct a geometric logic and a lambda theory whose model is this new interval mathematics. From this logic and from the lambda theory a constructive theory is then elaborated, similar to Martin-Löf type theory, being possible then to reason about programs of this new interval mathematics. This means the possibility of automatically checking the correctness of programs of interval mathematics. This new approach assumes only the concept, of rational numbers beyond, of course, the set theory language. It is constructed an interval system similar to the real system. A general notion of the concept of Dedekind cut was necessary to reach that. The resulting construction is an ordered system which will be called quasi-field, in opposition to the real numbers system which is algebraic. Thus, in the interval system the order is an intrinsic concept, unlike the real numbers sistems whose order does not belong to the algebraic system. The logic of this new interval mathematics is a categorical logic. This means that, every result got for basic domains applies also to cartesian product, disjoint union, function spaces, etc., of these domains. This simplifies considerably the new theory. An example of this simplication is given by the definition of derivative, a concept not, derived by the classical interval theory.

Page generated in 0.3852 seconds