Spelling suggestions: "subject:"analog bnetwork coding"" "subject:"analog bnetwork boding""
1 |
Robust Beamforming for OFDM Modulated Two-Way MIMO Relay NetworkZhou, Jianwei 2012 May 1900 (has links)
This thesis studies a two-way relay network (TWRN), which consists of two single antenna source nodes and a multi-antenna relay node. The source nodes exchange information via the assistance of the relay node in the middle. The relay scheme in this TWRN is amplify-and-forward (AF) based analog network coding (ANC). A robust beamforming matrix optimization algorithm is presented here with the objective to minimize the transmit power at the relay node under given signal to interference and noise ratio (SINR) requirements of source nodes. This problem is first formulated as a non-convex optimization problem, and it is next relaxed to a semi-definite programming (SDP) problem by utilizing the S-procedure and rank-one relaxation. This robust beamforming optimization algorithm is further validated in a MATLAB-based orthogonal frequency-division multiplexing (OFDM) MIMO two-way relay simulation system. To better investigate the performance of this beamforming algorithm in practical systems, synchronization issues such as standard timing offset (STO) and carrier frequency offset (CFO) are considered in simulation. The transmission channel is modeled as a frequency selective fading channel, and the source nodes utilize training symbols to perform minimum mean-square error (MMSE) channel estimation. BER curves under perfect and imperfect synchronization are presented to show the performance of TWRN with ANC. It is shown that the outage probability of robust beamforming algorithm is tightly related to the SINR requirements at the source nodes, and the outage probability increases significantly when the SINR requirements are high.
|
2 |
Design and Implementation of Physical Layer Network Coding ProtocolsMaduike, Dumezie K. 2009 August 1900 (has links)
There has recently been growing interest in using physical layer network coding
techniques to facilitate information transfer in wireless relay networks. The physical
layer network coding technique takes advantage of the additive nature of wireless
signals by allowing two terminals to transmit simultaneously to the relay node.
This technique has several performance benefits, such as improving utilization and
throughput of wireless channels and reducing delay.
In this thesis, we present an algorithm for joint decoding of two unsynchronized
transmitters to a modulo-2 sum of their transmitted messages. We address the problems
that arise when the boundaries of the signals do not align with each other and
when their phases are not identical. Our approach uses a state-based Viterbi decoding
scheme that takes into account the timing offsets between the interfering signals. As a
future research plan, we plan to utilize software-defined radios (SDRs) as a testbed to
show the practicality of our approach and to verify its performance. Our simulation
studies show that the decoder performs well with the only degrading factor being the
noise level in the channel.
|
3 |
Performance evaluation and enhancement for AF two-way relaying in the presence of channel estimation errorWang, Chenyuan 30 April 2012 (has links)
Cooperative relaying is a promising diversity achieving technique to provide reliable transmission, high throughput and extensive coverage for wireless networks in a variety of applications. Two-way relaying is a spectrally efficient protocol, providing one solution to overcome the half-duplex loss in one-way relay channels. Moreover, incorporating the multiple-input-multiple-output (MIMO) technology can further improve the spectral efficiency and diversity gain. A lot of related work has been performed on the two-way relay network (TWRN), but most of them assume perfect channel state information (CSI). In a realistic scenario, however, the channel is estimated and the estimation error exists. So in this thesis, we explicitly take into account the CSI error, and investigate its impact on the performance of amplify-and-forward (AF) TWRN where either multiple distributed single-antenna relays or a single multiple-antenna relay station is exploited.
For the distributed relay network, we consider imperfect self-interference cancellation at both sources that exchange information with the help of multiple relays, and maximal ratio combining (MRC) is then applied to improve the decision statistics under imperfect signal detection. The system performance degradation in terms of outage probability and average bit-error rate (BER) are analyzed, as well as their asymptotic trend. To further improve the spectral efficiency while maintain the spatial diversity, we utilize the maximum minimum (Max-Min) relay selection (RS), and examine the impact of imperfect CSI on this single RS scheme. To mitigate the negative effect of imperfect CSI, we resort to adaptive power allocation (PA) by minimizing either the outage probability or the average BER, which can be cast as a Geometric Programming (GP) problem. Numerical results verify the correctness of our analysis and show that the adaptive PA scheme outperforms the equal PA scheme under the aggregated effect of imperfect CSI.
When employing a single MIMO relay, the problem of robust MIMO relay design has been dealt with by considering the fact that only imperfect CSI is available. We design the MIMO relay based upon the CSI estimates, where the estimation errors are included to attain the robust design under the worst-case philosophy. The optimization problem corresponding to the robust MIMO relay design is shown to be nonconvex. This motivates the pursuit of semidefinite relaxation (SDR) coupled with the randomization technique to obtain computationally efficient high-quality approximate solutions. Numerical simulations compare the proposed MIMO relay with the existing nonrobust method, and therefore validate its robustness against the channel uncertainty. / Graduate
|
4 |
Wireless and Social Networks : Some Challenges and InsightsSunny, Albert January 2016 (has links) (PDF)
Wireless networks have potential applications in wireless Internet connectivity, battlefields, disaster relief, and cyber-physical systems. While the nodes in these networks communicate with each other over the air, the challenges faced by and the subsequent design criteria of these networks are diverse. In this thesis, we study and discuss a few design requirements of these networks, such as efficient utilization of the network bandwidth in IEEE 802.11 infrastructure networks, evaluating utility of sensor node deployments, and security from eavesdroppers.
The presence of infrastructure IEEE 802.11 based Wireless Local Area Networks (WLANs) allows mobile users to seamlessly transfer huge volumes of data. While these networks accommodate mobility, and are a cost-effective alternative to cellular networks, they are well known to display several performance anomalies. We study a few such anomalies, and provide a performance management solution for IEEE 802.11 based WLANs. On the other hand, in sensor networks, the absence of infrastructure mandates the use of adhoc network architectures. In these architectures, nodes are required to route data to gateway nodes over a multi-hop network. These gateway nodes are larger in size, and costlier in comparison with the regular nodes. In this context, we propose a unified framework that can be used to compare different deployment scenarios, and provide a means to design efficient large-scale adhoc networks.
In modern times, security has become an additional design criterion in wireless networks. Traditionally, secure transmissions were enabled using cryptographic schemes. However, in recent years, researchers have explored physical layer security as an alternative to these traditional cryptographic schemes. Physical layer security enables secure transmissions at non-zero data rate between two communicating nodes, by exploiting the degraded nature of the eavesdropper channel and the inherent randomness of the wireless medium. Also, in many practical scenarios, several nodes cooperate to improve their individual secrecy rates. Therefore, in this thesis, we also study scenarios, where cooperative schemes can improve secure end-to-end data transmission rates, while adhering to an overall power budget.
In spite of the presence of voluminous reservoirs of information such as digital libraries and the Internet, asking around still remains a popular means of seeking information. In scenarios where the person is interested in communal, or location-specific information, such kind of retrieval may yield better results than a global search. Hence, wireless networks should be designed, analyzed and controlled by taking into account the evolution of the underlying social networks. This alliance between social network analysis and adhoc network architectures can greatly advance the design of network protocols, especially in environments with opportunistic communications. Therefore, in addition to the above mentioned problem, in this thesis, we have also presented and studied a model that captures the temporal evolution of information in social networks with memory.
|
5 |
Techniques de transmission et d'accès sans fil dans les réseaux ad-hoc véhiculaires (VANETS) / Transmission and channel access techniques in vehicular ad-hoc networks (VANETS)Ahmad, Abdel Mehsen 09 October 2012 (has links)
Les réseaux véhiculaires font l’objet de recherches actives aussi bien dans le domaine des réseaux que dans celui des transports. Le potentiel des réseaux véhiculaires à fournir des services comme l’information sur le trafic en temps réel ou sur les accidents font de cette technologie un domaine de recherche très important. Ces réseaux peuvent comporter des communications véhicule-à-véhicule (V2V), véhicule-à-infrastructure (V2I), ou une combinaison des deux. La norme IEEE 1609.4 est la spécification multicanal pour l’IEEE802.11p/WAVE des réseaux véhiculaires (VANETs). Elle utilise sept canaux, l'un étant un canal de contrôle (CCH) qui est écouté par les équipements de façon périodique, et les six autres canaux sont utilisés comme canaux de service (SCH). Elle définit également une division du temps en alternance entre les intervalles CCH et les intervalles SCH. L’objet de cette thèse de doctorat est d’évaluer les performances des réseaux VANETs dans le cas des communications véhiculaires sans infrastructure, et au niveau des couches inférieures du standard 802.11p. Dans la première partie, nous proposons une approche MAC d’allocation multicanal opportuniste dans un contexte sans infrastructure. Cette approche est conforme à la norme IEEE1609.4 -2010 de l'architecture WAVE pour un fonctionnement multicanal, et elle est conçue pour des applications de services de données (non urgentes), tout en assurant la transmission des messages de sécurité routière et des paquets de contrôle. Pour maintenir la qualité de service des deux types de messages (urgents et non-urgents) en exploitant la capacité du canal, deux solutions sont proposées. Dans la deuxième partie, lorsque le véhicule sélectionne son canal et contrôle son alternance temporelle entre CCH et SCH, il commence à transmettre ses paquets, en particulier sur le canal CCH, lesquels ont une durée de péremption. Nous présentons une approche visant à minimiser les collisions des émetteurs tout en évitant la contention de début d’intervalle, en particulier dans un contexte de densité élevée de véhicules. Même si les mécanismes proposés ci-dessus diminuent le taux de collision, il n’est pas possible de les supprimer complètement. Dans la troisième partie, nous traitons le problème des collisions entre les paquets diffusés sur le CCH, en particulier quand la charge des messages transmis dépasse la capacité du canal. Pour cela, nous proposons un nouveau mécanisme de codage réseau analogique adapté à la modulation QPSK pour les messages diffusés sur le CCH. Dans cette approche des symboles connus sont envoyés avant d'envoyer les paquets pour estimer les paramètres du canal et une solution explicite est utilisée pour inverser le système de la superposition de deux paquets / Vehicular networks are the subject of active research in the field of networks as well as transport. The potential for vehicular networks to provide services such as traffic information in real time or accident makes this technology a very important research domain. These networks may support vehicle-to-vehicle communications (V2V), vehicle-to-infrastructure (V2I), or a combination of both. The IEEE 1609.4 is the specification of multichannel operations for IEEE802 .11p/WAVE vehicular networks (VANETs). It uses seven channels; one being a control channel (CCH) which is listened periodically by the vehicles and the other six channels are used as service channels (SCH). It also defines a time division between alternating CCH and SCH intervals. The purpose of this thesis is to evaluate the performance of VANETs in the case of vehicular communications without infrastructure, and at the lower layers of IEEE 802.11p standard. In the first part, we propose an opportunistic multichannel MAC allocation in an environment without infrastructure. This approach is consistent with the standard IEEE1609.4 -2010/WAVE for a multi-channel operation, and it is designed for data services applications (non-urgent), while ensuring the transmission of road safety messages and control packets. To maintain the quality of service of the two types of messages (urgent and non-urgent) by exploiting the channel capacity, two solutions are proposed. In the second part, when the vehicle selects its channel and controls its temporal alternation between CCH and SCH, it starts transmitting its packets, particularly on the CCH, which have an expiration time. We present an approach to minimize collisions between transmitters while avoiding contention at the beginning of CCH interval, especially in a context of high vehicular density. Although the mechanisms proposed above reduce the collision rate, it is not possible to completely remove these collisions. In the third part, we address the problem of collisions between broadcast packets on the CCH, especially when the load of transmitted messages exceeds the channel capacity. For this purpose, we propose a new analog network coding mechanism adapted to QPSK modulation for broadcast messages on the CCH. In this approach, known symbols are sent before sending the packets to estimate the channel parameters and an explicit solution is used to reverse the system of the superposition of two packets
|
Page generated in 0.0547 seconds