• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fusions multimodales pour la recherche d'humains par un robot mobile / Multimodal fusions for human detection by a mobile robot

Labourey, Quentin 19 May 2017 (has links)
Dans ce travail, nous considérons le cas d'un robot mobile d'intérieur dont l'objectif est de détecter les humains présents dans l'environnement et de se positionner physiquement par rapport à eux, dans le but de mieux percevoir leur état. Pour cela, le robot dispose de différents capteurs (capteur RGB-Depth, microphones, télémètre laser). Des contributions de natures variées ont été effectuées :Classification d'événements sonores en environnement intérieur : La méthode de classification proposée repose sur une taxonomie de petite taille et est destinée à différencier les marqueurs de la présence humaine. L'utilisation de fonctions de croyance permet de prendre en compte l'incertitude de la classification, et de labelliser un son comme « inconnu ».Fusion audiovisuelle pour la détection de locuteurs successifs dans une conversation : Une méthode de détection de locuteurs est proposée dans le cas du robot immobile, placé comme témoin d'une interaction sociale. Elle repose sur une fusion audiovisuelle probabiliste. Cette méthode a été testée sur des vidéos acquises par le robot.Navigation dédiée à la détection d'humains à l'aide d'une fusion multimodale : A partir d'informations provenant des capteurs hétérogènes, le robot cherche des humains de manière autonome dans un environnement connu. Les informations sont fusionnées au sein d'une grille de perception multimodale. Cette grille permet au robot de prendre une décision quant à son prochain déplacement, à l'aide d'un automate reposant sur des niveaux de priorité des informations perçues. Ce système a été implémenté et testé sur un robot Q.bo.Modélisation crédibiliste de l'environnement pour la navigation : La construction de la grille de perception multimodale est améliorée à l'aide d'un mécanisme de fusion reposant sur la théorie des fonctions de croyance. Ceci permet au robot de maintenir une grille « évidentielle » dans le temps comprenant l'information perçue et son incertitude. Ce système a d'abord été évalué en simulation, puis sur le robot Q.bo. / In this work, we consider the case of mobile robot that aims at detecting and positioning itself with respect to humans in its environment. In order to fulfill this mission, the robot is equipped with various sensors (RGB-Depth, microphones, laser telemeter). This thesis contains contributions of various natures:Sound classification in indoor environments: A small taxonomy is proposed in a classification method destined to enable a robot to detect human presence. Uncertainty of classification is taken into account through the use of belief functions, allowing us to label a sound as "unknown".Speaker tracking thanks to audiovisual data fusion: The robot is witness to a social interaction and tracks the successive speakers with probabilistic audiovisual data fusion. The proposed method was tested on videos extracted from the robot's sensors.Navigation dedicated to human detection thanks to a multimodal fusion:} The robot autonomously navigates in a known environment to detect humans thanks to heterogeneous sensors. The data is fused to create a multimodal perception grid. This grid enables the robot to chose its destinations, depending on the priority of perceived information. This system was implemented and tested on a Q.bo robot.Credibilist modelization of the environment for navigation: The creation of the multimodal perception grid is improved by the use of credibilist fusion. This enables the robot to maintain an evidential grid in time, containing the perceived information and its uncertainty. This system was implemented in simulation first, and then on a Q.bo robot.

Page generated in 0.0792 seconds