• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatio-temporal data interpolation for dynamic scene analysis

Kim, Kihwan 06 January 2012 (has links)
Analysis and visualization of dynamic scenes is often constrained by the amount of spatio-temporal information available from the environment. In most scenarios, we have to account for incomplete information and sparse motion data, requiring us to employ interpolation and approximation methods to fill for the missing information. Scattered data interpolation and approximation techniques have been widely used for solving the problem of completing surfaces and images with incomplete input data. We introduce approaches for such data interpolation and approximation from limited sensors, into the domain of analyzing and visualizing dynamic scenes. Data from dynamic scenes is subject to constraints due to the spatial layout of the scene and/or the configurations of video cameras in use. Such constraints include: (1) sparsely available cameras observing the scene, (2) limited field of view provided by the cameras in use, (3) incomplete motion at a specific moment, and (4) varying frame rates due to different exposures and resolutions. In this thesis, we establish these forms of incompleteness in the scene, as spatio-temporal uncertainties, and propose solutions for resolving the uncertainties by applying scattered data approximation into a spatio-temporal domain. The main contributions of this research are as follows: First, we provide an efficient framework to visualize large-scale dynamic scenes from distributed static videos. Second, we adopt Radial Basis Function (RBF) interpolation to the spatio-temporal domain to generate global motion tendency. The tendency, represented by a dense flow field, is used to optimally pan and tilt a video camera. Third, we propose a method to represent motion trajectories using stochastic vector fields. Gaussian Process Regression (GPR) is used to generate a dense vector field and the certainty of each vector in the field. The generated stochastic fields are used for recognizing motion patterns under varying frame-rate and incompleteness of the input videos. Fourth, we also show that the stochastic representation of vector field can also be used for modeling global tendency to detect the region of interests in dynamic scenes with camera motion. We evaluate and demonstrate our approaches in several applications for visualizing virtual cities, automating sports broadcasting, and recognizing traffic patterns in surveillance videos.
2

Fusions multimodales pour la recherche d'humains par un robot mobile / Multimodal fusions for human detection by a mobile robot

Labourey, Quentin 19 May 2017 (has links)
Dans ce travail, nous considérons le cas d'un robot mobile d'intérieur dont l'objectif est de détecter les humains présents dans l'environnement et de se positionner physiquement par rapport à eux, dans le but de mieux percevoir leur état. Pour cela, le robot dispose de différents capteurs (capteur RGB-Depth, microphones, télémètre laser). Des contributions de natures variées ont été effectuées :Classification d'événements sonores en environnement intérieur : La méthode de classification proposée repose sur une taxonomie de petite taille et est destinée à différencier les marqueurs de la présence humaine. L'utilisation de fonctions de croyance permet de prendre en compte l'incertitude de la classification, et de labelliser un son comme « inconnu ».Fusion audiovisuelle pour la détection de locuteurs successifs dans une conversation : Une méthode de détection de locuteurs est proposée dans le cas du robot immobile, placé comme témoin d'une interaction sociale. Elle repose sur une fusion audiovisuelle probabiliste. Cette méthode a été testée sur des vidéos acquises par le robot.Navigation dédiée à la détection d'humains à l'aide d'une fusion multimodale : A partir d'informations provenant des capteurs hétérogènes, le robot cherche des humains de manière autonome dans un environnement connu. Les informations sont fusionnées au sein d'une grille de perception multimodale. Cette grille permet au robot de prendre une décision quant à son prochain déplacement, à l'aide d'un automate reposant sur des niveaux de priorité des informations perçues. Ce système a été implémenté et testé sur un robot Q.bo.Modélisation crédibiliste de l'environnement pour la navigation : La construction de la grille de perception multimodale est améliorée à l'aide d'un mécanisme de fusion reposant sur la théorie des fonctions de croyance. Ceci permet au robot de maintenir une grille « évidentielle » dans le temps comprenant l'information perçue et son incertitude. Ce système a d'abord été évalué en simulation, puis sur le robot Q.bo. / In this work, we consider the case of mobile robot that aims at detecting and positioning itself with respect to humans in its environment. In order to fulfill this mission, the robot is equipped with various sensors (RGB-Depth, microphones, laser telemeter). This thesis contains contributions of various natures:Sound classification in indoor environments: A small taxonomy is proposed in a classification method destined to enable a robot to detect human presence. Uncertainty of classification is taken into account through the use of belief functions, allowing us to label a sound as "unknown".Speaker tracking thanks to audiovisual data fusion: The robot is witness to a social interaction and tracks the successive speakers with probabilistic audiovisual data fusion. The proposed method was tested on videos extracted from the robot's sensors.Navigation dedicated to human detection thanks to a multimodal fusion:} The robot autonomously navigates in a known environment to detect humans thanks to heterogeneous sensors. The data is fused to create a multimodal perception grid. This grid enables the robot to chose its destinations, depending on the priority of perceived information. This system was implemented and tested on a Q.bo robot.Credibilist modelization of the environment for navigation: The creation of the multimodal perception grid is improved by the use of credibilist fusion. This enables the robot to maintain an evidential grid in time, containing the perceived information and its uncertainty. This system was implemented in simulation first, and then on a Q.bo robot.

Page generated in 0.0604 seconds