• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur la notion d'optimalité dans les problèmes de bandit stochastique / On the notion of optimality in the stochastic multi-armed bandit problems

Ménard, Pierre 03 July 2018 (has links)
Cette thèse s'inscrit dans les domaines de l'apprentissage statistique et de la statistique séquentielle. Le cadre principal est celui des problèmes de bandit stochastique à plusieurs bras. Dans une première partie, on commence par revisiter les bornes inférieures sur le regret. On obtient ainsi des bornes non-asymptotiques dépendantes de la distribution que l'on prouve de manière très simple en se limitant à quelques propriétés bien connues de la divergence de Kullback-Leibler. Puis, on propose des algorithmes pour la minimisation du regret dans les problèmes de bandit stochastique paramétrique dont les bras appartiennent à une certaine famille exponentielle ou non-paramétrique en supposant seulement que les bras sont à support dans l'intervalle unité, pour lesquels on prouve l'optimalité asymptotique (au sens de la borne inférieure de Lai et Robbins) et l'optimalité minimax. On analyse aussi la complexité pour l'échantillonnage séquentielle visant à identifier la distribution ayant la moyenne la plus proche d'un seuil fixé, avec ou sans l'hypothèse que les moyennes des bras forment une suite croissante. Ce travail est motivé par l'étude des essais cliniques de phase I, où l'hypothèse de croissance est naturelle. Finalement, on étend l'inégalité de Fano qui contrôle la probabilité d'évènements disjoints avec une moyenne de divergences de Kullback-leibler à des variables aléatoires arbitraires bornées sur l'intervalle unité. Plusieurs nouvelles applications en découlent, les plus importantes étant une borne inférieure sur la vitesse de concentration de l'a posteriori Bayésien et une borne inférieure sur le regret pour un problème de bandit non-stochastique. / The topics addressed in this thesis lie in statistical machine learning and sequential statistic. Our main framework is the stochastic multi-armed bandit problems. In this work we revisit lower bounds on the regret. We obtain non-asymptotic, distribution-dependent bounds and provide simple proofs based only on well-known properties of Kullback-Leibler divergence. These bounds show in particular that in the initial phase the regret grows almost linearly, and that the well-known logarithmic growth of the regret only holds in a final phase. Then, we propose algorithms for regret minimization in stochastic bandit models with exponential families of distributions or with distribution only assumed to be supported by the unit interval, that are simultaneously asymptotically optimal (in the sense of Lai and Robbins lower bound) and minimax optimal. We also analyze the sample complexity of sequentially identifying the distribution whose expectation is the closest to some given threshold, with and without the assumption that the mean values of the distributions are increasing. This work is motivated by phase I clinical trials, a practically important setting where the arm means are increasing by nature. Finally we extend Fano's inequality, which controls the average probability of (disjoint) events in terms of the average of some Kullback-Leibler divergences, to work with arbitrary unit-valued random variables. Several novel applications are provided, in which the consideration of random variables is particularly handy. The most important applications deal with the problem of Bayesian posterior concentration (minimax or distribution-dependent) rates and with a lower bound on the regret in non-stochastic sequential learning.
2

Stratégies optimistes en apprentissage par renforcement

Filippi, Sarah 24 November 2010 (has links) (PDF)
Cette thèse traite de méthodes « model-based » pour résoudre des problèmes d'apprentissage par renforcement. On considère un agent confronté à une suite de décisions et un environnement dont l'état varie selon les décisions prises par l'agent. Ce dernier reçoit tout au long de l'interaction des récompenses qui dépendent à la fois de l'action prise et de l'état de l'environnement. L'agent ne connaît pas le modèle d'interaction et a pour but de maximiser la somme des récompenses reçues à long terme. Nous considérons différents modèles d'interactions : les processus de décisions markoviens, les processus de décisions markoviens partiellement observés et les modèles de bandits. Pour ces différents modèles, nous proposons des algorithmes qui consistent à construire à chaque instant un ensemble de modèles permettant d'expliquer au mieux l'interaction entre l'agent et l'environnement. Les méthodes dites « model-based » que nous élaborons se veulent performantes tant en pratique que d'un point de vue théorique. La performance théorique des algorithmes est calculée en terme de regret qui mesure la différence entre la somme des récompenses reçues par un agent qui connaîtrait à l'avance le modèle d'interaction et celle des récompenses cumulées par l'algorithme. En particulier, ces algorithmes garantissent un bon équilibre entre l'acquisition de nouvelles connaissances sur la réaction de l'environnement (exploration) et le choix d'actions qui semblent mener à de fortes récompenses (exploitation). Nous proposons deux types de méthodes différentes pour contrôler ce compromis entre exploration et exploitation. Le premier algorithme proposé dans cette thèse consiste à suivre successivement une stratégie d'exploration, durant laquelle le modèle d'interaction est estimé, puis une stratégie d'exploitation. La durée de la phase d'exploration est contrôlée de manière adaptative ce qui permet d'obtenir un regret logarithmique dans un processus de décision markovien paramétrique même si l'état de l'environnement n'est que partiellement observé. Ce type de modèle est motivé par une application d'intérêt en radio cognitive qu'est l'accès opportuniste à un réseau de communication par un utilisateur secondaire. Les deux autres algorithmes proposés suivent des stratégies optimistes : l'agent choisit les actions optimales pour le meilleur des modèles possibles parmi l'ensemble des modèles vraisemblables. Nous construisons et analysons un tel algorithme pour un modèle de bandit paramétrique dans un cas de modèles linéaires généralisés permettant ainsi de considérer des applications telles que la gestion de publicité sur internet. Nous proposons également d'utiliser la divergence de Kullback-Leibler pour la construction de l'ensemble des modèles vraisemblables dans des algorithmes optimistes pour des processus de décision markoviens à espaces d'états et d'actions finis. L'utilisation de cette métrique améliore significativement le comportement de des algorithmes optimistes en pratique. De plus, une analyse du regret de chacun des algorithmes permet de garantir des performances théoriques similaires aux meilleurs algorithmes de l'état de l'art.
3

Contributions to Multi-Armed Bandits : Risk-Awareness and Sub-Sampling for Linear Contextual Bandits / Contributions aux bandits manchots : gestion du risque et sous-échantillonnage pour les bandits contextuels linéaires

Galichet, Nicolas 28 September 2015 (has links)
Cette thèse s'inscrit dans le domaine de la prise de décision séquentielle en environnement inconnu, et plus particulièrement dans le cadre des bandits manchots (multi-armed bandits, MAB), défini par Robbins et Lai dans les années 50. Depuis les années 2000, ce cadre a fait l'objet de nombreuses recherches théoriques et algorithmiques centrées sur le compromis entre l'exploration et l'exploitation : L'exploitation consiste à répéter le plus souvent possible les choix qui se sont avérés les meilleurs jusqu'à présent. L'exploration consiste à essayer des choix qui ont rarement été essayés, pour vérifier qu'on a bien identifié les meilleurs choix. Les applications des approches MAB vont du choix des traitements médicaux à la recommandation dans le contexte du commerce électronique, en passant par la recherche de politiques optimales de l'énergie. Les contributions présentées dans ce manuscrit s'intéressent au compromis exploration vs exploitation sous deux angles spécifiques. Le premier concerne la prise en compte du risque. Toute exploration dans un contexte inconnu peut en effet aboutir à des conséquences indésirables ; par exemple l'exploration des comportements d'un robot peut aboutir à des dommages pour le robot ou pour son environnement. Dans ce contexte, l'objectif est d'obtenir un compromis entre exploration, exploitation, et prise de risque (EER). Plusieurs algorithmes originaux sont proposés dans le cadre du compromis EER. Sous des hypothèses fortes, l'algorithme MIN offre des garanties de regret logarithmique, à l'état de l'art ; il offre également une grande robustesse, contrastant avec la forte sensibilité aux valeurs des hyper-paramètres de e.g. (Auer et al. 2002). L'algorithme MARAB s'intéresse à un critère inspiré de la littérature économique(Conditional Value at Risk), et montre d'excellentes performances empiriques comparées à (Sani et al. 2012), mais sans garanties théoriques. Enfin, l'algorithme MARABOUT modifie l'estimation du critère CVaR pour obtenir des garanties théoriques, tout en obtenant un bon comportement empirique. Le second axe de recherche concerne le bandit contextuel, où l'on dispose d'informations additionnelles relatives au contexte de la décision ; par exemple, les variables d'état du patient dans un contexte médical ou de l'utilisateur dans un contexte de recommandation. L'étude se focalise sur le choix entre bras qu'on a tirés précédemment un nombre de fois différent. Le choix repose en général sur la notion d'optimisme, comparant les bornes supérieures des intervalles de confiance associés aux bras considérés. Une autre approche appelée BESA, reposant sur le sous-échantillonnage des valeurs tirées pour les bras les plus visités, et permettant ainsi de se ramener au cas où tous les bras ont été tirés un même nombre de fois, a été proposée par (Baransi et al. 2014). / This thesis focuses on sequential decision making in unknown environment, and more particularly on the Multi-Armed Bandit (MAB) setting, defined by Lai and Robbins in the 50s. During the last decade, many theoretical and algorithmic studies have been aimed at cthe exploration vs exploitation tradeoff at the core of MABs, where Exploitation is biased toward the best options visited so far while Exploration is biased toward options rarely visited, to enforce the discovery of the the true best choices. MAB applications range from medicine (the elicitation of the best prescriptions) to e-commerce (recommendations, advertisements) and optimal policies (e.g., in the energy domain). The contributions presented in this dissertation tackle the exploration vs exploitation dilemma under two angles. The first contribution is centered on risk avoidance. Exploration in unknown environments often has adverse effects: for instance exploratory trajectories of a robot can entail physical damages for the robot or its environment. We thus define the exploration vs exploitation vs safety (EES) tradeoff, and propose three new algorithms addressing the EES dilemma. Firstly and under strong assumptions, the MIN algorithm provides a robust behavior with guarantees of logarithmic regret, matching the state of the art with a high robustness w.r.t. hyper-parameter setting (as opposed to, e.g. UCB (Auer 2002)). Secondly, the MARAB algorithm aims at optimizing the cumulative 'Conditional Value at Risk' (CVar) rewards, originated from the economics domain, with excellent empirical performances compared to (Sani et al. 2012), though without any theoretical guarantees. Finally, the MARABOUT algorithm modifies the CVar estimation and yields both theoretical guarantees and a good empirical behavior. The second contribution concerns the contextual bandit setting, where additional informations are provided to support the decision making, such as the user details in the ontent recommendation domain, or the patient history in the medical domain. The study focuses on how to make a choice between two arms with different numbers of samples. Traditionally, a confidence region is derived for each arm based on the associated samples, and the 'Optimism in front of the unknown' principle implements the choice of the arm with maximal upper confidence bound. An alternative, pioneered by (Baransi et al. 2014), and called BESA, proceeds instead by subsampling without replacement the larger sample set. In this framework, we designed a contextual bandit algorithm based on sub-sampling without replacement, relaxing the (unrealistic) assumption that all arm reward distributions rely on the same parameter. The CL-BESA algorithm yields both theoretical guarantees of logarithmic regret and good empirical behavior.

Page generated in 0.0694 seconds