Spelling suggestions: "subject:"deathpromoting complex"" "subject:"ratepromoting complex""
1 |
MenzelJohannes_MSc_July_20132013 July 1900 (has links)
ABSTRACT
The molecular mechanisms controlling longevity have been subject to intense scrutiny in recent years. It is clear that genomic stability, stress response and nutrient signaling all play critical roles in lifespan determination, but the precise molecular mechanisms and their often subtle influence on cellular function remain largely unknown. The Anaphase Promoting Complex (APC) is an evolutionarily conserved ubiquitin-protein ligase composed of 13 subunits in yeast, required for M and G1 cell cycle progression, and is associated with cancer and premature aging in many model systems when defective. The APC targets substrates for proteasome-dependent degradation, yet the full range of APC substrates and their role in mediating genomic stability, stress response and longevity are largely unknown. In this study, we use the model organism Saccharomyces cerevisiae to investigate the results of two screens designed to identify novel APC targets, regulators and/or modifiers, in an effort to better understand the function of the APC. Both of these screens made use of the Apc5 subunit. This subunit is likely an important structural component of the APC and may be targeted by many APC regulatory enzymes. This subunit is essential, but a temperature sensitive (ts) allele of Apc5 was available for these studies.
First, a Yeast 2-Hybrid (Y2H) screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as a potential APC substrate. We hypothesized that the APC targets Fob1 for proteasome- and ubiquitin-dependent degradation. Authenticating Fob1 as a novel APC substrate makes up the first part of this thesis. We have found that Fob1 is unstable specifically in G1, and cycles throughout the cell cycle in a manner similar to Clb2, an APC target. Consistent with the APC mediating Fob1 degradation, Fob1 is stabilized in APC and proteasome mutants. Disruption of FOB1 in WT cells increased replicative lifespan, a measure of how many daughter cells a single mother will produce prior to senescence; moreover, FOB1 disruption improved APC mutant replicative lifespan defects. Increased FOB1 expression decreased replicative lifespan in WT cells, while increased expression in APC mutant cells did not reduce replicative lifespan further, suggesting an epistatic interaction. FOB1 deletion also suppressed cell cycle progression, and rDNA recombination defects observed in apc5CA cells. Mutation to a putative Destruction Box-like motif (Fob1E420V) disrupted Fob1 modification, stabilized the protein and increased rDNA recombination. These results support our hypothesis that Fob1 is a novel APC target and that Fob1 dosage may be regulated by the APC in response to cell cycle and environmental cues to regulate APC-dependent genomic stability and longevity.
Second, an aptamer (small peptide) based screen identified peptides capable of suppressing the ts defect of the apc5CA mutant. One aptamer of interest is Y65, which has homology to the ubiquitin ligase Elc1. A Y2H found that this peptide Y65 binds the unstable stress response transcription factor Cin5. We hypothesized that this peptide may stabilize Cin5 by masking ubiquitin-dependent degradation. Stabilized Cin5 may in turn alleviate some apc5CA mutant defects. Characterizing Cin5 and confirming that Cin5 is subject to proteasome and ubiquitin-dependent degradation makes up the second portion of this thesis. During our investigation of Cin5 we identify a phospho-inhibited degradation motif within Cin5 that prevents ubiquitination and subsequent degradation when phosphorylated. We also provide evidence suggesting Cin5 may be targeted by a previously unidentified ubiquitin ligase subcomplex including Elc1 and Grr1. These data have helped elucidate the ubiquitin dependent regulation of Cin5.
In summary, this research demonstrates the feasibility of using the Y2H and aptamer screens to identify and characterize molecular networks that interplay with the APC. Additionally, identifying and characterizing proteins where APC activity or function can be modified by aptamer binding has the potential to classify drug targets for therapeutic use in higher eukaryotes. Further understanding of the role the APC plays in cell cycle progression, chromatin assembly, genomic stability, stress response and longevity will be valuable to fundamental biological science, and may also have applications in health science and medicine.
|
2 |
Meiosis-specific Regulation of the Anaphase-Promoting Complex / Meisis-spezifische Regulation des Anaphase-Promoting ComplexOelschlägel, Tobias 02 March 2006 (has links) (PDF)
Meiosis is a specialized cell cycle, which generates haploid gametes from diploid parental cells. During meiosis one round of cohesion establishment during premeiotic DNA replication mediates two rounds of chromosome segregation. During meiosis I homologous chromosomes separate, whereas sister chromatids segregate during the second meiotic division without an intervening round of DNA replication. Both rounds of chromosome segregation are triggered by an ubiquitin ligase called the Anaphase-Promoting Complex or Cyclosome (APC/C). APC/C-dependent destruction of securin/Pds1 is required to activate separase, a thiol protease that mediates chromosome segregation by cleavage of the cohesin complex. The first meiotic division is preceded by an extended prophase I, during which maternal and paternal chromatids undergo recombination. The persistence of cohesion during premeiotic S- and prophase I is essential for recombination and both meiotic nuclear divisions. In order to prevent premature loss of cohesion, the APC/C has to be inactivated during early meiosis. How the APC/C is kept inactive during premeiotic S- and prophase I was unknown. This question has been addressed by studying the APC/C subunit Mnd2 from the budding yeast Saccharomyces cerevisiae. This work demonstrates that Mnd2 is required for the persistence of cohesion during premeiotic S- and prophase I. Mnd2 prevents premature activation of the APC/C by the meiosis-specific substrate recognition factor Ama1. In cells lacking Mnd2, the APC/C-Ama1 enzyme triggers premature ubiquitin-dependent degradation of Pds1, which leads to premature separation of sister chromatids due to an unrestrained activity of separase. Thus, chromosome segregation during meiosis depends on both inhibition of a meiosis-specific APC/C and timely activation of APC/C- dependent proteolysis. / Die Meiose ist ein spezialisierter Zellzyklus, der zum Ziel hat haploide Gameten aus diploiden Vorläuferzellen zu produzieren. Dafür erfolgen nach der prä-meiotischen DNA Replikation zwei aufeinanderfolgende Kernteilungen. In der ersten meiotischen Teilung erfolgt die Trennung der homologen Chromosomen. In einer zweiten meiotischen Teilung werden dann die Schwesterchromatiden getrennt. Die Trennung der Chromosomen wird durch den Anaphase-Promoting Complex oder Cyclosome (APC/C), einer Ubiquitin Ligase, reguliert. Der APC/C initiiert den Abbau von Securin/Pds1, einem Inhibitor der Thiol-Protease Separase, welche für die Trennung der Chromosomen zum Beginn der Anaphase verantwortlich ist. In einer im Vergleich zur Mitose extrem langen meiotischen Prophase I findet Rekombination zwischen maternalen und paternalen Chromosomen statt. Für diesen Vorgang, sowie für die beiden folgenden meiotischen Teilungen, wird Kohäsion zwischen den Schwesterchromatiden benötigt. Ein frühzeitiger Verlust der Kohäsion führt zur frühzeitigen Trennnung der Schwesterchromatiden, wodurch aneuploide Gameten produziert werden können. Daher muss die Aktivität des APC/C während der meiotischen Prophase I inhibiert werden. Wie der APC/C während der Prophase I inaktiviert wird, war bisher unbekannt. Einsicht in dieses Problem ergab sich aus der Untersuchung der APC/C Untereinheit Mnd2 aus der Bäckerhefe Saccharomyces cerevisiae. Es wird gezeigt, dass Mnd2 für den Verbleib der Kohäsion zwischen den Schwesterchromatiden während der meiotischen S- und Prophase I benötigt wird. Während dieser Phase verhindert Mnd2 die frühzeitige Aktivierung der Meiose-spezifischen Form des APC/C-Ama1. In meiotischen Zellen, die kein Mnd2 besitzen, löst das APC/C-Ama1 Enzym die Ubiquitin-abhängige Zerstörung von Pds1 aus. Dies führt zu einer frühzeitigen Aktivierung von Separase, welches die Trennung der Schwesterchromatiden schon während der meiotischen S- und Prophase I zur Folge hat. Die korrekte Verteilung der Chromosomen hängt daher sowohl von der Inhibierung als auch der Aktivierung des APC/C ab.
|
3 |
Meiosis-specific Regulation of the Anaphase-Promoting ComplexOelschlägel, Tobias 29 March 2006 (has links)
Meiosis is a specialized cell cycle, which generates haploid gametes from diploid parental cells. During meiosis one round of cohesion establishment during premeiotic DNA replication mediates two rounds of chromosome segregation. During meiosis I homologous chromosomes separate, whereas sister chromatids segregate during the second meiotic division without an intervening round of DNA replication. Both rounds of chromosome segregation are triggered by an ubiquitin ligase called the Anaphase-Promoting Complex or Cyclosome (APC/C). APC/C-dependent destruction of securin/Pds1 is required to activate separase, a thiol protease that mediates chromosome segregation by cleavage of the cohesin complex. The first meiotic division is preceded by an extended prophase I, during which maternal and paternal chromatids undergo recombination. The persistence of cohesion during premeiotic S- and prophase I is essential for recombination and both meiotic nuclear divisions. In order to prevent premature loss of cohesion, the APC/C has to be inactivated during early meiosis. How the APC/C is kept inactive during premeiotic S- and prophase I was unknown. This question has been addressed by studying the APC/C subunit Mnd2 from the budding yeast Saccharomyces cerevisiae. This work demonstrates that Mnd2 is required for the persistence of cohesion during premeiotic S- and prophase I. Mnd2 prevents premature activation of the APC/C by the meiosis-specific substrate recognition factor Ama1. In cells lacking Mnd2, the APC/C-Ama1 enzyme triggers premature ubiquitin-dependent degradation of Pds1, which leads to premature separation of sister chromatids due to an unrestrained activity of separase. Thus, chromosome segregation during meiosis depends on both inhibition of a meiosis-specific APC/C and timely activation of APC/C- dependent proteolysis. / Die Meiose ist ein spezialisierter Zellzyklus, der zum Ziel hat haploide Gameten aus diploiden Vorläuferzellen zu produzieren. Dafür erfolgen nach der prä-meiotischen DNA Replikation zwei aufeinanderfolgende Kernteilungen. In der ersten meiotischen Teilung erfolgt die Trennung der homologen Chromosomen. In einer zweiten meiotischen Teilung werden dann die Schwesterchromatiden getrennt. Die Trennung der Chromosomen wird durch den Anaphase-Promoting Complex oder Cyclosome (APC/C), einer Ubiquitin Ligase, reguliert. Der APC/C initiiert den Abbau von Securin/Pds1, einem Inhibitor der Thiol-Protease Separase, welche für die Trennung der Chromosomen zum Beginn der Anaphase verantwortlich ist. In einer im Vergleich zur Mitose extrem langen meiotischen Prophase I findet Rekombination zwischen maternalen und paternalen Chromosomen statt. Für diesen Vorgang, sowie für die beiden folgenden meiotischen Teilungen, wird Kohäsion zwischen den Schwesterchromatiden benötigt. Ein frühzeitiger Verlust der Kohäsion führt zur frühzeitigen Trennnung der Schwesterchromatiden, wodurch aneuploide Gameten produziert werden können. Daher muss die Aktivität des APC/C während der meiotischen Prophase I inhibiert werden. Wie der APC/C während der Prophase I inaktiviert wird, war bisher unbekannt. Einsicht in dieses Problem ergab sich aus der Untersuchung der APC/C Untereinheit Mnd2 aus der Bäckerhefe Saccharomyces cerevisiae. Es wird gezeigt, dass Mnd2 für den Verbleib der Kohäsion zwischen den Schwesterchromatiden während der meiotischen S- und Prophase I benötigt wird. Während dieser Phase verhindert Mnd2 die frühzeitige Aktivierung der Meiose-spezifischen Form des APC/C-Ama1. In meiotischen Zellen, die kein Mnd2 besitzen, löst das APC/C-Ama1 Enzym die Ubiquitin-abhängige Zerstörung von Pds1 aus. Dies führt zu einer frühzeitigen Aktivierung von Separase, welches die Trennung der Schwesterchromatiden schon während der meiotischen S- und Prophase I zur Folge hat. Die korrekte Verteilung der Chromosomen hängt daher sowohl von der Inhibierung als auch der Aktivierung des APC/C ab.
|
4 |
Analysis of Mph1 kinase and its substrates in spindle checkpoint signallingZich, Judith January 2010 (has links)
Accurate chromosome segregation is crucial as mis-segregation results in aneuploidy, which can lead to severe diseases such as cancer. The spindle checkpoint monitors sister-chromatid attachment and inhibits the onset of anaphase until all chromosomes are correctly bi-oriented on the mitotic spindle. The spindle checkpoint machinery of S.pombe is composed of many proteins, one of which is the kinase Mph1 (Mps1p-like pombe homolog). It previously has been shown that Mph1 is essential for the spindle checkpoint but not whether this is due to its kinase activity. In this study we determined the role of Mph1 kinase activity in the spindle checkpoint. To do so a kinase-dead version of Mph1, which had no detectable kinase activity, was analysed. Using this kinase-dead allele we showed that lack of Mph1 kinase activity abolished the spindle checkpoint and led to chromosome missegregation. As a result of these two defects cell viability of cells lacking Mph1 kinase activity was severely impaired. These results led to the question of how Mph1 kinase activity regulates the spindle checkpoint. Spindle checkpoint signalling is thought to mainly take place at two sites, at the kinetochore and at the anaphase promoting complex (APC). The APC is an E3 ubiquitin ligase that drives cells into anaphase by targeting the separase inhibitor securin and cyclin B for degradation by the 26 S proteasome. Upon activation of the spindle checkpoint the APC is inhibited by the mitotic checkpoint complex (MCC) composed of Slp1, Mad2 and Mad3. In this study we wanted to test whether the regulatory role of Mph1 kinase in the spindle checkpoint is via MCC binding to the APC. Using the kinase-dead version of Mph1 we showed that Mad2 and Mad3 binding to the APC is severely impaired in the absence of Mph1 kinase activity. This result led to the hypothesis that Mph1 might regulate Mad2 and Mad3 binding Using kinase assays Mad2 and Mad3 were identified as in vitro substrates of Mph1 and phosphorylation sites in Mad2 and Mad3 were determined by mass spectrometry. Phosphorylation mutants of Mad2 and Mad3 showed spindle checkpoint defects, indicating that they are important Mph1 substrates.
|
5 |
Initiating the Spindle Assembly Checkpoint Signal: Checkpoint Protein Mad1 Associates with Outer Kinetochore Protein Ndc80 in Budding YeastWeirich, Alexandra 14 June 2013 (has links)
The spindle assembly checkpoint (SAC) is an evolutionarily conserved mechanism that delays the initiation of anaphase by inhibiting the Anaphase Promoting Complex (APC) until all kinetochores have achieved bipolar attachment on the mitotic spindle. Mad1-3, Bub1, and Bub3, components of the SAC, are conserved from yeast to humans. These proteins localize to unattached kinetochores, though it is unknown with which kinetochore proteins they interact and how these interactions transduce information about microtubule attachement. Here, purification of the checkpoint proteins from Saccharomyces cerevisiae suggests that Mad1 interacts with the outer kinetochore protein Ndc80 in a SAC, cell cycle, and DNA dependent manner. Ndc80 is thought to mediate attachment of kinetochores to microtubules so the interaction between Mad1 and Ndc80 suggests a mechanism by which cells sense kinetochore-microtubule attachment. The SAC is of special importance in some types of cancer where genetic damage and aneuploidy is correlated with mutated SAC genes. A better understanding of the SAC mechanism will aid in the development of targetted cancer therpeutics.
|
6 |
Initiating the Spindle Assembly Checkpoint Signal: Checkpoint Protein Mad1 Associates with Outer Kinetochore Protein Ndc80 in Budding YeastWeirich, Alexandra January 2013 (has links)
The spindle assembly checkpoint (SAC) is an evolutionarily conserved mechanism that delays the initiation of anaphase by inhibiting the Anaphase Promoting Complex (APC) until all kinetochores have achieved bipolar attachment on the mitotic spindle. Mad1-3, Bub1, and Bub3, components of the SAC, are conserved from yeast to humans. These proteins localize to unattached kinetochores, though it is unknown with which kinetochore proteins they interact and how these interactions transduce information about microtubule attachement. Here, purification of the checkpoint proteins from Saccharomyces cerevisiae suggests that Mad1 interacts with the outer kinetochore protein Ndc80 in a SAC, cell cycle, and DNA dependent manner. Ndc80 is thought to mediate attachment of kinetochores to microtubules so the interaction between Mad1 and Ndc80 suggests a mechanism by which cells sense kinetochore-microtubule attachment. The SAC is of special importance in some types of cancer where genetic damage and aneuploidy is correlated with mutated SAC genes. A better understanding of the SAC mechanism will aid in the development of targetted cancer therpeutics.
|
7 |
How to Assemble a Functional Mitotic Checkpoint ComplexTipton, Aaron R. 20 September 2012 (has links)
No description available.
|
8 |
Mechanism of APC/C activation and substrate specificity in mitosisZhang, Suyang January 2018 (has links)
In eukaryotes, cell proliferation and cell cycle transitions are strictly controlled by the anaphase-promoting complex/cyclosome (APC/C). The APC/C is an E3 ubiquitin ligase that regulates chromatid segregation at the metaphase to anaphase transition, exit from mitosis and the establishment and maintenance of G1. The APC/C’s catalytic activity and substrate specificity are controlled by its interactions with two coactivators, Cdc20 and Cdh1. In contrast to Cdh1, APC/C activation by Cdc20 during mitosis requires hyper-phosphorylation of APC/C subunits by cyclin-dependent kinase (Cdk) and polo kinase. The aim of the first part of this thesis was to understand how mitotic phosphorylation regulates APC/C activity. Using cryo-electron microscopy and biochemical analysis, we found that an auto-inhibitory segment of the Apc1 subunit acts as a molecular switch that in apo unphosphorylated APC/C interacts with a coactivator-binding site (C-box binding site), thereby obstructing engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box binding site to relieve APC/C auto-inhibition. Efficient phosphorylation of the auto-inhibitory segment requires the recruitment of the kinase Cdk-cyclin-Cks to a hyper-phosphorylated loop of Apc3. In addition to regulation of APC/C activity by phosphorylation, ordered cell progression is ensured by the ability of the APC/C to target substrate degradation in a defined order. At mitosis onset, degradation of securin and cyclin B1 is inhibited by the spindle assembly checkpoint, exerted by the mitotic checkpoint complex (MCC), whereas both cyclin A2 and Nek2A are not subject to MCC inhibition. The aim of the second part of the thesis was to elucidate the mechanism of how the APC/C achieves its substrate specificity. Our biochemical analysis showed that the resistance of cyclin A2 to MCC inhibition is due to its ABBA motif and the Cdk-associated Cks2 subunit. Furthermore, we found that it is the Cdc20 molecule of the MCC that binds to the ABBA motif to allow for cyclin A2 ubiquitination. Strikingly, mutating all three known degrons (KEN box, D box and ABBA motif) of cyclin A did not affect its ubiquitination by APC/CCdc20. Deletion of a potential novel degron found within residues 60-80 of cyclin A2 impaired cyclin A2 ubiquitination.
|
9 |
HnRNP E1 Protects Chromosomal Stability Through Post-Transcriptional Regulation of Cdc27 ExpressionSchwartz, Laura Link 30 November 2015 (has links)
No description available.
|
10 |
Le rôle du APC (Anaphase-Promoting Complex) <br />au cours de la phase G2/M après dommage de l'ADNLee, Jinho 29 October 2007 (has links) (PDF)
Les agents permettant de créer des dommages sur l'ADN sont principalement utilisés dans les traitements contre le cancer. L'activation de points de contrôle du cycle cellulaire après lésion de l'ADN entraîne un arrêt du cycle des cellules. De la connaissance des mécanismes moléculaires de l'arrêt du cycle cellulaire par ces points de contrôle dépend l'efficacité du traitement. Dans les cellules humaines, ces points de contrôle sont primordiaux puisque leur inactivation entraîne la carcinogenèse (génération de cancers). Après traitement par des agents chimiothérapiques et des rayons X, les cellules s'arrêtent en phase G-1 et G-2/Mitose (M) du cycle cellulaire. Si de nombreuses études ont permis de clarifier les mécanismes de l'arrêt en phase G-1 pour des cellules dont l'ADN est endommagé, peu de données sont disponibles concernant l'arrêt en phase G-2/M. Parmi ces points de contrôle, le point de contrôle G-2/M est particulièrement important car il prévient l'entrée en mitose (phase M) des cellules dont l'ADN est endommagé. <br /> Nous avons analysé le rôle du complex appelé APC (Anaphase-Promoting Complex) dans les points de contrôle G-2/M après lésion de l'ADN. Les lésions de l'ADN sont induites dans les cellules synchronisées en phase S. Suite à ces dommages, les cellules montrent un retard et s'arrêtent en phase G-2 avec 4N chromosomes. Afin d'identifier les bases biochimiques de l'arrêt en G-2/M après traitement avec des agents endommageant l'ADN, nous allons concentrer notre recherche sur un complexe composé de multiples protéines possédant une activité de ligation de l'ubiquitine de type E3 (ubiquitin-ligase E3). Ce complexe APC est necessaire pour la dégradation des inhibiteurs d'entrée en anaphase, cyclins mitotiques, et plusieurs kinases mitotiques pour la complétion de la sortie de la mitose. Nous avons analysé et déterminé que l'absence d'activité du complexe APC inhibe l'activation du point de contrôle G-2/M lors de dommages de l'ADN.
|
Page generated in 0.096 seconds